Metal oxide aerogels for high-temperature applications

[1]  M. Hatami,et al.  Investigation of the Different Morphologies of Zinc Oxide (ZnO) in Cellulose/ZnO Hybrid Aerogel on the Photocatalytic Degradation Efficiency of Methyl Orange , 2021, Topics in Catalysis.

[2]  M. Hatami,et al.  Numerical Modeling for the Photocatalytic Degradation of Methyl Orange from Aqueous Solution using Cellulose/Zinc Oxide Hybrid Aerogel: Comparison with Experimental Data , 2021, Topics in Catalysis.

[3]  Duu-Jong Lee,et al.  Theoretical modeling of thermal conductivity of alumina aerogel composites based on real microstructures , 2021 .

[4]  M. Worsley,et al.  Prussian blue as a co-catalyst for enhanced Cr(vi) photocatalytic reduction promoted by titania-based nanoparticles and aerogels , 2021 .

[5]  Zhiyong Mao,et al.  Preparation and properties of the Al2O3–SiO2 aerogel/alumina framework composite , 2021 .

[6]  Haiquan Guo,et al.  Phase development and pore stability of yttria‐ and ytterbia‐stabilized zirconia aerogels , 2020 .

[7]  B. Patil,et al.  Influence of Various Sol–Gel Parameters on the Physico‐Chemical Properties of Sulfuric Acid Chelated Zirconia Aerogels Dried at Ambient Pressure , 2020 .

[8]  Robert B. Balow,et al.  Zirconia-Based Aerogels for Sorption and Degradation of Dimethyl Methylphosphonate , 2020 .

[9]  Rui Zhang,et al.  Ultra-small sepiolite fiber toughened alumina aerogel with enhanced thermal stability and machinability , 2020, Journal of Porous Materials.

[10]  A. I. Stakhanov,et al.  Thermal oxidation of polypropylene catalyzed by manganese oxide aerogel in oxygen-enriched supercritical carbon dioxide , 2020 .

[11]  Jun Woo Kim,et al.  Fabrication of yttria-stabilized zirconia aerogel for high-performance thermal barrier coating , 2019, Journal of Alloys and Compounds.

[12]  L. Durães,et al.  Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications , 2019, Journal of Materials Chemistry A.

[13]  M. Worsley,et al.  Towards thermally stable aerogel photocatalysts: TiCl4-based sol-gel routes for the design of nanostructured silica-titania aerogel with high photocatalytic activity and outstanding thermal stability , 2019, Journal of Environmental Chemical Engineering.

[14]  Xiaodong Wu,et al.  Robust monolithic polymer(resorcinol-formaldehyde) reinforced alumina aerogel composites with mutually interpenetrating networks , 2019, RSC advances.

[15]  I. Fábián,et al.  Heat treatment induced phase transformations in zirconia and yttria-stabilized zirconia monolithic aerogels , 2019, The Journal of Supercritical Fluids.

[16]  A. Shalygin,et al.  Mesoporous aerogel-like Al-Si oxides obtained via supercritical antisolvent precipitation of alumina and silica sols , 2019, The Journal of Supercritical Fluids.

[17]  Xiao-dong Shen,et al.  Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator , 2019, Journal of Sol-Gel Science and Technology.

[18]  B. Shon,et al.  A study on the methods for making iron oxide aerogel , 2019, Journal of Industrial and Engineering Chemistry.

[19]  Yuehua Wu,et al.  Opacifier embedded and fiber reinforced alumina-based aerogel composites for ultra-high temperature thermal insulation , 2019, Ceramics International.

[20]  Wei Liu,et al.  One-step self-assembly fabrication of three-dimensional copper oxide/graphene oxide aerogel composite material for supercapacitors , 2019, Solid State Communications.

[21]  Yusheng Wu,et al.  Investigation of the effect of lanthanum oxide on the thermal stability of alumina aerogel , 2019, Journal of Porous Materials.

[22]  Yongshuai Xie,et al.  Monolithic zirconia aerogel from polyacetylacetonatozirconium precursor and ammonia hydroxide gel initiator: formation mechanism, mechanical strength and thermal properties , 2018, RSC advances.

[23]  T. Zhao,et al.  Bacterial cellulose derived monolithic titania aerogel consisting of 3D reticulate titania nanofibers , 2018, Cellulose.

[24]  Hyung‐Ho Park,et al.  Evolution of textural characteristics of surfactant-mediated mesoporous zirconia aerogel powders prepared via ambient pressure drying route , 2018, International Nano Letters.

[25]  H. Cho,et al.  Zirconia-based alumina compound aerogels with enhanced mesopore structure , 2018, Ceramics International.

[26]  A. Mazilkin,et al.  An approach for highly transparent titania aerogels preparation , 2018 .

[27]  Mingjia Zhi,et al.  The investigation of an organic acid assisted sol–gel method for preparing monolithic zirconia aerogels , 2018, RSC advances.

[28]  Mingjia Zhi,et al.  Synthesis of high-temperature resistant monolithic zirconia-based aerogel via facile water glass assisted sol–gel method , 2018, Journal of Sol-Gel Science and Technology.

[29]  Baolin Wang,et al.  Novel Al2O3–SiO2 aerogel/porous zirconia composite with ultra-low thermal conductivity , 2018, Journal of Porous Materials.

[30]  T. Touam,et al.  Effect of supercritical organic solvent on structural and optical properties of cerium doped zinc oxide aerogel nanoparticles , 2017 .

[31]  H. Cho,et al.  Effect of cationic and non-ionic surfactants on the microstructure of ambient pressure dried zirconia aerogel , 2017 .

[32]  Hyung‐Ho Park,et al.  Flexible and Transparent Silica Aerogels: An Overview , 2017 .

[33]  Xiaodong Wang,et al.  Highly thermally stable alumina-based aerogels modified by partially hydrolyzed aluminum tri-sec-butoxide , 2017, Journal of Sol-Gel Science and Technology.

[34]  Xia Qiu Preparation of Manganese Oxide/Graphene Aerogel and Its Application as an Advanced Supercapacitor Electrode Material , 2017 .

[35]  R. Malekfar,et al.  The effects of hydrolysis level on structural properties of titania aerogels , 2017 .

[36]  Yuehua Wu,et al.  Highly thermally stable zirconia/silica composite aerogels prepared by supercritical deposition , 2017 .

[37]  H. Bajaj,et al.  Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol , 2016 .

[38]  Li Yangang,et al.  Preparation and characterization of silica-titania aerogel monoliths by sol-gel method , 2016, 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO).

[39]  Wuhua Yuan,et al.  Improvement of thermal stability of zirconia aerogel by addition of yttrium , 2016, Journal of Sol-Gel Science and Technology.

[40]  A. Ghorbel,et al.  Effect of the doping agent nature on the characteristic and catalytic properties of aerogel zirconia catalysts doped with sulfate groups or heteropolytungstic acid , 2015 .

[41]  B. Liu,et al.  Heat-resistant, strong titania aerogels achieved by supercritical deposition , 2015 .

[42]  B. Liu,et al.  A facile citric acid assisted sol–gel method for preparing monolithic yttria-stabilized zirconia aerogel , 2015 .

[43]  Jiyu Fang,et al.  Synthesis of silica–titania composite aerogel beads for the removal of Rhodamine B in water , 2015 .

[44]  Jun Shen,et al.  Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. , 2015, ACS applied materials & interfaces.

[45]  R. Nisticò,et al.  The hypersaline synthesis of titania: from powders to aerogels , 2015 .

[46]  Hong Zhanglian,et al.  Synthesis of monolithic aerogel-like alumina via the accumulation of mesoporous hollow microspheres , 2015 .

[47]  B. Liu,et al.  Trimethylethoxysilane-modified super heat-resistant alumina aerogels for high-temperature thermal insulation and adsorption applications , 2014 .

[48]  Wenjun Zhu,et al.  Preparation of monolithic titania aerogels with high surface area by a sol–gel process combined surface modification , 2014 .

[49]  Huaihe Song,et al.  Synthesis of monolithic zirconia aerogel via a nitric acid assisted epoxide addition method , 2014 .

[50]  Xiaoguang Yang,et al.  Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel , 2014 .

[51]  H. Maleki,et al.  An overview on silica aerogels synthesis and different mechanical reinforcing strategies , 2014 .

[52]  A. Ghorbel,et al.  Textural, structural and catalytic properties of zirconia doped by heteropolytungstic acid: a comparative study between aerogel and xerogel catalysts , 2014, Journal of Sol-Gel Science and Technology.

[53]  Shih‐Yuan Lu,et al.  Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. , 2013, Chemistry.

[54]  Jun Shen,et al.  Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels , 2013 .

[55]  Keyan Zheng,et al.  Synthesis of hydrophobic alumina aerogel with surface modification from oil shale ash , 2013 .

[56]  Jun Shen,et al.  Greatly strengthened silica aerogels via co-gelation of binary sols with different concentrations: A method to control the microstructure of the colloids , 2013 .

[57]  Jun Shen,et al.  Effect of the thermal treatment on microstructure and physical properties of low-density and high transparency silica aerogels via acetonitrile supercritical drying , 2013, Journal of Porous Materials.

[58]  Jun Shen,et al.  A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel , 2013, Materials.

[59]  Shali Wu,et al.  Synthesis of monolithic zirconia with macroporous bicontinuous structure via epoxide-driven sol–gel process accompanied by phase separation , 2013, Journal of Sol-Gel Science and Technology.

[60]  C. Brinker,et al.  Minimum thermal conductivity considerations in aerogel thin films , 2012 .

[61]  L. Mir,et al.  Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel , 2012 .

[62]  A. Khaleel,et al.  Alkoxide-free sol–gel synthesis of aerogel iron–chromium mixed oxides with unique textural properties , 2012 .

[63]  Jun Shen,et al.  Preparation and characterization of monolithic alumina aerogels , 2011 .

[64]  R. Slama,et al.  Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder , 2011 .

[65]  Y. Bi,et al.  Synthesis of a Low-Density Copper Oxide Monolithic Aerogel Using Inorganic Salt Precursor , 2011 .

[66]  Lina Wu,et al.  Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying , 2010 .

[67]  Sung-Wook Kim,et al.  Surface and pore structure of alumina derived from xerogel/aerogel , 2010 .

[68]  A. Ghorbel,et al.  Synthesis and characterization of aerogel sulphated zirconia doped with chromium: n-hexane isomerization , 2010 .

[69]  S. Yahya,et al.  Magnetic Phase Development of Iron Oxide‐SiO2 Aerogel and Xerogel Prepared using Rice Husk Ash as Precursor , 2010 .

[70]  Yasuaki Tokudome,et al.  Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. , 2009, Journal of colloid and interface science.

[71]  A. Ghorbel,et al.  ETUDE COMPARATIVE DES PROPRIETES TEXTURALES ET STRUCTURALES DE LA ZIRCONE DOPEE AU CHROME A L'ETAT AEROGEL ET XEROGEL , 2009 .

[72]  Jun Shen,et al.  Monolithic copper oxide aerogel via dispersed inorganic sol-gel method , 2009 .

[73]  Lifang Chen,et al.  Catalytic properties of nanoscale iron-doped zirconia solid-solution aerogels. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[74]  R. Mao,et al.  Evaluating and understanding the hydrothermal stability of alumina aerogel doped with yttrium oxide and used as a catalyst support for the thermo-catalytic cracking (TCC) process , 2008 .

[75]  R. Mao,et al.  Catalysts for the thermo-catalytic cracking (TCC) process: Interactions between the yttria in yttria-doped alumina aerogel and the mono-oxide MoO3, CeO2, and bi-oxide MoO3–CeO2 species , 2007 .

[76]  F. H. Sanchez,et al.  Synthesis and magnetic properties of iron oxide–silica aerogel nanocomposites , 2007 .

[77]  Chien-Tsung Wang,et al.  Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation , 2005 .

[78]  D. Brandon,et al.  Metastable alumina polymorphs : Crystal structures and transition sequences , 2005 .

[79]  R. Simpson,et al.  Monolithic nickel(II)-based aerogels using an organic epoxide: the importance of the counterion , 2004 .

[80]  Yongxiang Zhao,et al.  Preparation of zirconia aerogel by heating of alcohol–aqueous salt solution , 2003 .

[81]  S. Brock,et al.  Influence of Synthetic and Processing Parameters on the Surface Area, Speciation, and Particle Formation in Copper Oxide/Silica Aerogel Composites , 2003 .

[82]  B. Dunn,et al.  Electrochemical Properties of Vanadium Oxide Aerogels and Aerogel Nanocomposites , 2003 .

[83]  M. Stolarski,et al.  Titania aerogels: Preparation and photocatalytic tests , 2003 .

[84]  M. Casula,et al.  Iron oxide–silica aerogel and xerogel nanocomposite materials , 2001 .

[85]  T. Horiuchi,et al.  Maintenance of large surface area of alumina heated at elevated temperatures above 1300 °C by preparing silica-containing pseudoboehmite aerogel , 2001 .

[86]  Lawrence W. Hrubesh,et al.  New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors , 2001 .

[87]  Guo Shouren Stability of t-ZrO_2 in zirconia powder prepared by solgel process , 2001 .

[88]  A. Ghorbel,et al.  Characterization and Catalytic Properties of Aerogel Chromium Oxide Supported by Alumina or Silica , 2000 .

[89]  A. Pierre,et al.  Structure and texture of alumina aerogel monoliths made by complexation with ethyl acetoacetate , 1999 .

[90]  T. Horiuchi,et al.  A novel alumina catalyst support with high thermal stability derived from silica-modified alumina aerogel , 1999 .

[91]  E. I. Ko,et al.  A homogeneously dispersed silica dopant for control of the textural and structural evolution of an alumina aerogel , 1998 .

[92]  G. Shter,et al.  Heat Treatment of Alumina Aerogels , 1997 .

[93]  C. Brinker,et al.  Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage , 1995, Nature.

[94]  T. Horiuchi,et al.  High surface area alumina aerogel at elevated temperatures , 1994 .

[95]  A. Craievich,et al.  SAXS and BET studies of aging and densification of silica aerogels , 1987 .

[96]  G. Nicolaon,et al.  Inorganic oxide aerogels , 1976 .

[97]  Bulent E. Yoldas,et al.  Alumina gels that form porous transparent Al2O3 , 1975 .

[98]  Be Yoldas,et al.  A TRANSPARENT POROUS ALUMINA , 1975 .