Effect of Zn2+-Sn4+ co-substitution on structural and magnetic properties of SrFe12-2xZnxSnxO19 (x = 0–2) M-type strontium ferrite

[1]  T. Zhao,et al.  Improved Magnetic Properties of Self-composite SrFe12O19 Powder Prepared by Fe3O4 Nanoparticles , 2022, Arabian Journal of Chemistry.

[2]  V. G. Kostishin,et al.  The origin of the dual ferroic properties in quasi-centrosymmetrical SrFe12−xInxO19 hexaferrites , 2021 .

[3]  X. Tao,et al.  Effects of intrinsic defects and doping on SrFe12O19: A first-principles exploration of the structural, electronic and magnetic properties , 2021 .

[4]  Carlos Segovia Fernández,et al.  Greener processing of SrFe12O19 ceramic permanent magnets by two-step sintering , 2021, Ceramics International.

[5]  A. Trukhanov,et al.  Impact of the heat treatment conditions on crystal structure, morphology and magnetic properties evolution in BaM nanohexaferrites , 2021 .

[6]  D. E. Zhivulin,et al.  Effect of titanium substitution and temperature variation on structure and magnetic state of barium hexaferrites , 2021 .

[7]  G. Barucca,et al.  Tuning the Magnetic Properties of Hard–Soft SrFe12O19/CoFe2O4 Nanostructures via Composition/Interphase Coupling , 2021, The Journal of Physical Chemistry C.

[8]  T. Phan,et al.  Coexistence of Zn and Fe ions influenced magnetic and microwave shielding properties of Zn-doped SrFe12O19 ferrites , 2021 .

[9]  A. Ghasemi,et al.  Magnetic properties improvement through exchange-coupling in hard/soft SrFe12O19/Co nanocomposite , 2021 .

[10]  Darko Makovec,et al.  Progress and prospects of hard hexaferrites for permanent magnet applications , 2020 .

[11]  J. Liu,et al.  Novel Molten Salt Assisted Autocombustion Method for the Synthesis of Aluminum-Doped SrFe12-xAlxO19 Hexaferrite Nanoparticles. , 2020, Journal of nanoscience and nanotechnology.

[12]  Hao‐Su Luo,et al.  Effect of Zn and Ir doping on microwave absorption of SrFe12-2Zn Ir O19 , 2020 .

[13]  D. S. Klygach,et al.  Pecularities of the magnetic structure and microwave properties in Ba(Fe1-xScx)12O19 (x<0.1) hexaferrites , 2020 .

[14]  N. Lupu,et al.  Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions , 2020 .

[15]  Xiansong Liu,et al.  Structure and magnetic performance of Gd substituted Sr-based hexaferrites , 2020 .

[16]  Xiansong Liu,et al.  Influence of the Eu substitution on the structure and magnetic properties of the Sr-hexaferrites , 2020 .

[17]  Preksha N. Dhruv,et al.  Investigation of structural, hysteresis and electromagnetic parameters for microwave absorption application in doped Ba–Sr hexagonal ferrites at X-band , 2019, Journal of Alloys and Compounds.

[18]  I. Orue,et al.  Magnetic properties of ZnxFe3−xO4 nanoparticles: A competition between the effects of size and Zn doping level , 2019, Journal of Magnetism and Magnetic Materials.

[19]  B. Costa,et al.  Disorder of Fe(2)O5 bipyramids and spin-phonon coupling in SrFe12O19 nanoparticles , 2019, Ceramics International.

[20]  L. Panina,et al.  Features of crystal and magnetіc structure of the BaFe12-xGaxO19 (x ≤ 2) in the wіde temperature range , 2019, Journal of Alloys and Compounds.

[21]  Xiansong Liu,et al.  Characterizations of magnetic transition behavior and electromagnetic properties of Co-Ti co-substituted SrM-based hexaferrites SrCo Ti Fe12-2O19 compounds , 2019, Journal of Alloys and Compounds.

[22]  Xianfeng Meng,et al.  One-pot synthesis and microwave absorbing properties of ultrathin SrFe12O19 nanosheets , 2019, Journal of Alloys and Compounds.

[23]  M. Safdar,et al.  Structural and magnetic studies of Ce-Mn doped M-type SrFe12O19 hexagonal ferrites by sol-gel auto-combustion method , 2019, Journal of Magnetism and Magnetic Materials.

[24]  Min Zhang,et al.  Magnetic properties of Co and Ti co-doped strontium hexaferrite prepared by sol–gel method , 2019, Applied Physics A.

[25]  M. Bagherzadeh,et al.  Magnetic and microwave absorption properties of Cu/Zr doped M-type Ba/Sr hexaferrites prepared via sol-gel auto-combustion method , 2019, Journal of Alloys and Compounds.

[26]  Seong-Gon Kim,et al.  Site preference and magnetic properties of Zn-Sn-substituted strontium hexaferrite , 2018, Journal of Applied Physics.

[27]  A. Baykal,et al.  Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite , 2019, Ceramics International.

[28]  A. Shokri,et al.  The role of Co ion substitution in SnFe2O4 spinel ferrite nanoparticles: Study of structural, vibrational, magnetic and optical properties , 2018, Ceramics International.

[29]  L. Panina,et al.  Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1- - (BaTiO3) bicomponent ceramics , 2018, Ceramics International.

[30]  D. S. Klygach,et al.  Measurement of permittivity and permeability of barium hexaferrite , 2018, Journal of Magnetism and Magnetic Materials.

[31]  Jongryoul Kim,et al.  Magnetic Properties and Morphologies of Synthesized Strontium Ferrite Powders by the Molten Salt Method , 2018, IEEE Transactions on Magnetics.

[32]  Fan-hou Wang,et al.  Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0.4Sr0.6-xNdxFe12.0-x(Nb0.5Zn0.5)xO19 , 2018, Journal of Alloys and Compounds.

[33]  Fan-hou Wang,et al.  Synthesis, crystal structure and magnetic characterization of Pr3+ and Zn2+ ions co-doped hexagonal ferrites via the ceramic process , 2018, Chinese Journal of Physics.

[34]  C. Chauhan,et al.  Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase , 2018, Ceramics International.

[35]  Chuangui Jin,et al.  Hexagonal SrFe12O19 ferrite with high saturation magnetization , 2018, Ceramics International.

[36]  P. Thakur,et al.  Control of electromagnetic properties in substituted M-type hexagonal ferrites , 2018, Journal of Alloys and Compounds.

[37]  D. S. Klygach,et al.  Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths , 2018, Journal of Alloys and Compounds.

[38]  L. Panina,et al.  Polarization origin and iron positions in indium doped barium hexaferrites , 2018 .

[39]  A. Benyoussef,et al.  Experimental and theoretical investigation of SrFe12O19 nanopowder for permanent magnet application , 2017 .

[40]  R. Vijaya Kumar,et al.  Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites , 2017 .

[41]  L. Panina,et al.  Structure and magnetic properties of BaFe11.9In0.1O19 hexaferrite in a wide temperature range , 2016 .

[42]  V. G. Kostishin,et al.  Magnetic and absorbing properties of M-type substituted hexaferrites BaFe12–xGaxO19 (0.1 < x < 1.2) , 2016 .

[43]  F. Cunha,et al.  Hopkinson effect, structural and magnetic properties of M-type Sm3+-doped SrFe12O19 nanoparticles produced by a proteic sol–gel process , 2016 .

[44]  A. Balagurov,et al.  Crystal structure and magnetic properties of the BaFe12−xInxO19 (x=0.1–1.2) solid solutions , 2015 .

[45]  M. Moradi,et al.  Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method , 2015 .

[46]  Huaiwu Zhang,et al.  Phase formation, magnetic properties and Raman spectra of Co–Ti co-substitution M-type barium ferrites , 2015 .

[47]  Longjun Xu,et al.  Magnetic composite ZnFe2O4/SrFe12O19: Preparation, characterization, and photocatalytic activity under visible light , 2013 .

[48]  Mukhtar Ahmad,et al.  Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route , 2013 .

[49]  S. Erwin,et al.  Theory of magnetic enhancement in strontium hexaferrite through Zn–Sn pair substitution , 2012, 1209.5143.

[50]  R. Pullar Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics , 2012 .

[51]  U. Topal,et al.  Magnetic properties and remanence analysis in permanently magnetic BaFe12O19 foams , 2010 .

[52]  R. Pasricha,et al.  Impact of Particle Size on Room Temperature Ferrimagnetism of SrFe12O19 , 2010 .

[53]  M. Iqbal,et al.  Structural, magnetic and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles , 2009 .

[54]  J. Dai,et al.  Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method , 2008 .

[55]  Xiansong Liu,et al.  Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force , 2006 .

[56]  Xiaoxi Liu,et al.  The effects of La–Zn substitution on the magnetic properties of Sr-magnetoplumbite ferrite nano-particles , 2000 .

[57]  J. Kreisel,et al.  RAMAN STUDY OF SUBSTITUTED BARIUM FERRITE SINGLE CRYSTALS, BAFE12-2XMEXCOXO19 (ME = IR, TI) , 1999 .

[58]  J. Kreisel,et al.  Raman Spectra and Vibrational Analysis of BaFe12O19Hexagonal Ferrite , 1998 .

[59]  T. Wagner,et al.  Preparation and Crystal Structure Analysis of Magnetoplumbite-Type BaGa12O19 , 1998 .

[60]  A. Isalgué,et al.  Exchange interactions in BaFe12O19 , 1986 .

[61]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[62]  M. A. Gilleo Superexchange Interaction Energy for Fe3+-O2--Fe3+ Linkages , 1958 .

[63]  C. Kittel,et al.  Antiferromagnetic Arrangements in Ferrites , 1952 .