Late origin of the Saturn system

Saturn is orbited by a half dozen ice rich middle-sized moons (MSMs) of diverse geology and composition. These comprise � 4.4% of Saturn’s satellite mass; the rest is Titan, more massive per planet than Jupiter’s satellites combined. Jupiter has no MSMs. Disk-based models to explain these differences exist, but have various challenges and assumptions. We introduce the hypothesis that Saturn originally had a ‘galilean’ system of moons comparable to Jupiter’s, that collided and merged, ultimately forming Titan. Mergers liberate ice-rich spiral arms in our simulations, that self-gravitate into escaping clumps resembling Saturn’s MSMs in size and compositional diversity. We reason that MSMs were spawned in a few such collisional mergers around Saturn, while Jupiter’s original satellites stayed locked in resonance.

[1]  Erik Asphaug,et al.  Structure of Comet Shoemaker-Levy 9 Inferred from the Physics of Tidal Breakup , 1996 .

[2]  D. Stevenson,et al.  Viscosity of rock-ice mixtures and applications to the evolution of icy satellites☆ , 1983 .

[3]  E. Asphaug,et al.  Chondrule formation during planetesimal accretion , 2011 .

[4]  Roberto Orosei,et al.  Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper , 2007 .

[5]  D. Stevenson,et al.  Despin Mechanism for Protogiant Planets and Ionization State of Protogiant Planetary Disks , 1996 .

[6]  D. Williams,et al.  Size Distribution of Collisionally Evolved Asteroidal Populations: Analytical Solution for Self-Similar Collision Cascades , 1994 .

[7]  D. Lin,et al.  ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS , 2011, 1110.5042.

[8]  A. Fortes Titan’s internal structure and the evolutionary consequences , 2012 .

[9]  Robert T. Pappalardo,et al.  Titan: An exogenic world? , 2011 .

[10]  H. Melosh,et al.  Formation of Earth’s Core , 2007 .

[11]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[12]  S. Peale,et al.  The tides of Io , 1981 .

[13]  R. Canup,et al.  LUNAR ACCRETION FROM A ROCHE-INTERIOR FLUID DISK , 2012, 1210.0932.

[14]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[15]  Luciano Iess,et al.  Gravity Field, Shape, and Moment of Inertia of Titan , 2010, Science.

[16]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[17]  T. Owen,et al.  A spectroscopic study of the surfaces of Saturn's large satellites: H 2 O ice, tholins, and minor constituents , 2005 .

[18]  E. Scott,et al.  Iron meteorite evidence for early formation and catastrophic disruption of protoplanets , 2007, Nature.

[19]  S. Ida,et al.  N-BODY SIMULATIONS OF SATELLITE FORMATION AROUND GIANT PLANETS: ORIGIN OF ORBITAL CONFIGURATION OF THE GALILEAN MOONS , 2012, 1205.0301.

[20]  H. Haack,et al.  Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid , 2001 .

[21]  J. Lunine,et al.  26Al decay: Heat production and a revised age for Iapetus , 2009 .

[22]  J. Burns,et al.  Shapes of the saturnian icy satellites and their significance , 2007 .

[23]  R. Canup Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite , 2010, Nature.

[24]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[25]  O. Karatekin,et al.  Titan's obliquity: an evidence for a subsurface ocean? , 2011, 1104.2741.

[26]  M. Nicolet The Earth: its Origin, History, and Physical Constitution , 1929, Nature.

[27]  W. Ward Orbital inclination of Iapetus and the rotation of the Laplacian plane , 1981 .

[28]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[29]  Ralph D. Lorenz,et al.  Tidal Dissipation on Titan , 1995 .

[30]  Equilibration in the aftermath of the lunar-forming giant impact , 2007, 1012.5323.

[31]  Jack Wisdom,et al.  Evolution of the Earth-Moon System , 1994 .

[32]  Harold F. Levison,et al.  Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune , 2007, 0712.0553.

[33]  T V Johnson,et al.  Encounter with saturn: voyager 1 imaging science results. , 1981, Science.

[34]  Douglas N. C. Lin,et al.  Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration , 2008, 0802.1114.

[35]  P. Cassen,et al.  Tidal dissipation, orbital evolution, and the nature of Saturn's inner satellites , 1980 .

[36]  A. Morbidelli,et al.  STATISTICAL STUDY OF THE EARLY SOLAR SYSTEM'S INSTABILITY WITH FOUR, FIVE, AND SIX GIANT PLANETS , 2012, 1208.2957.

[37]  Heikki Salo,et al.  Gravitational accretion of particles in Saturn's rings , 2004 .

[38]  Robert L. Tokar,et al.  The Dust Halo of Saturn's Largest Icy Moon, Rhea , 2008, Science.

[39]  G. Schubert,et al.  Treatise on geophysics , 2007 .

[40]  K. Tsiganis,et al.  Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity , 2012, 1208.4685.

[41]  S. Charnoz,et al.  Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons , 2011, 1109.3360.

[42]  Subrahmanyan Chandrasekhar,et al.  Ellipsoidal Figures of Equilibrium , 1969 .

[43]  David J. Stevenson,et al.  Origin of the Moon-The Collision Hypothesis , 1987 .

[44]  Zdeněk Kopal,et al.  Physics and Astronomy of the Moon , 1962 .

[45]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[46]  E. Scott,et al.  Impact histories of angrites, eucrites, and their parent bodies , 2011 .

[47]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[48]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[49]  S. Charnoz,et al.  Deciphering the origin of the regular satellites of gaseous giants ― Iapetus: The Rosetta ice-moon , 2009, 0908.2112.

[50]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION , 2012 .

[51]  M. Ćuk,et al.  Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning , 2012, Science.

[52]  F. Nimmo,et al.  Impact-driven ice loss in outer Solar System satellites: Consequences for the Late Heavy Bombardment , 2012 .

[53]  Erik Asphaug,et al.  Hit-and-run planetary collisions , 2006, Nature.

[54]  Erik Asphaug,et al.  Growth and Evolution of Asteroids , 2009 .

[55]  Sarah T. Stewart,et al.  VELOCITY-DEPENDENT CATASTROPHIC DISRUPTION CRITERIA FOR PLANETESIMALS , 2009 .

[56]  Erik Asphaug,et al.  Accretion Efficiency during Planetary Collisions , 2004 .

[57]  S. Peale An observational test for the origin of the Titan-Hyperion orbital resonance , 1978 .

[58]  S. Stewart,et al.  Impacts onto H2O ice: Scaling laws for melting, vaporization, excavation, and final crater size , 2011 .

[59]  H. J. Melosh,et al.  Dynamic fragmentation in impacts: Hydrocode simulation of laboratory impacts , 1992 .

[60]  W. Hartmann Megaregolith evolution and cratering cataclysm models—Lunar cataclysm as a misconception (28 years later) , 2003 .

[61]  M. Payne,et al.  Collisional evolution of eccentric planetesimal swarms , 2009, 0910.4725.

[62]  J. Moore,et al.  The geology of Tethys , 1983 .

[63]  J. Jeans Problems of Cosmology and Stellar Dynamics , 1920 .

[64]  David A. Yuen,et al.  Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems , 2007 .

[65]  W. Delamere,et al.  The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model , 2007 .

[66]  J. Burns,et al.  An Evolving View of Saturn’s Dynamic Rings , 2010, Science.

[67]  H. F. Levison,et al.  Ridge formation and de-spinning of Iapetus via an impact-generated satellite , 2011, 1105.1685.

[68]  W. Benz,et al.  Giant impacts on a primitive Uranus , 1992 .

[69]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[70]  Xinli Lu,et al.  A Clathrate Reservoir Hypothesis for Enceladus' South Polar Plume , 2006, Science.

[71]  H. J. Melosh,et al.  A hydrocode equation of state for SiO2 , 2007 .

[72]  R. Gil-Hutton,et al.  Collisional evolution of small body populations , 2002 .

[73]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[74]  S. Charnoz,et al.  Did Saturn's rings form during the Late Heavy Bombardment? , 2008, 0809.5073.

[75]  Derek C. Richardson,et al.  Disruption of fragmented parent bodies as the origin of asteroid families , 2003, Nature.

[76]  Harold F. Levison,et al.  On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .

[77]  E. Asphaug,et al.  Forming the lunar farside highlands by accretion of a companion moon , 2011, Nature.

[78]  Francois Mignard,et al.  The chaotic rotation of Hyperion , 1984 .

[79]  P. Thomas,et al.  Geophysical implications of the long‐wavelength topography of the Saturnian satellites , 2011 .

[80]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[81]  H. Melosh,et al.  The Stickney Impact of Phobos: A Dynamical Model , 1990 .

[82]  J. Veverka,et al.  Saturn's small satellites: Voyager imaging results , 1983 .

[83]  William R. Ward,et al.  A common mass scaling for satellite systems of gaseous planets , 2006, Nature.

[84]  F. Ryerson,et al.  Experimental constraints on the chemical evolution of large icy satellites , 2002 .

[85]  J. Burns,et al.  Cassini imaging search rules out rings around Rhea , 2010, 1008.1764.

[86]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[87]  S. Charnoz,et al.  The recent formation of Saturn's moonlets from viscous spreading of the main rings , 2010, Nature.

[88]  S. Squyres,et al.  Bombardment history of the Saturn system , 1985 .

[89]  A. Nakamura,et al.  The dynamical evolution of dwarf planet (136108) Haumea’s collisional family: general properties and implications for the trans-Neptunian belt , 2011, 1112.3438.

[90]  Erik Asphaug,et al.  Similar-sized collisions and the diversity of planets , 2010 .

[91]  Rosaly M. C. Lopes,et al.  Cassini RADAR observations of Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe , 2006 .

[92]  K. Zahnle,et al.  Fates of satellite ejecta in the Saturn system , 2005 .

[93]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[94]  W. Benz,et al.  Catastrophic Disruptions Revisited , 1999 .

[95]  W. Durham,et al.  Cold compaction of water ice , 2005 .

[96]  J. Wisdom,et al.  Tidal evolution of Mimas, Enceladus, and Dione , 2007 .

[97]  Orbital Evolution of Planets Embedded in a Planetesimal Disk , 1999, astro-ph/9902370.

[98]  P. Goldreich,et al.  The history of the lunar orbit , 1966 .

[99]  R. Canup,et al.  Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment , 2009 .

[100]  J. Burns,et al.  Cassini Imaging Science: Initial Results on Saturn's Rings and Small Satellites , 2005, Science.

[101]  A Primordial Origin of the Laplace Relation Among the Galilean Satellites , 2002, Science.

[102]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[103]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration , 2007, 0709.1375.

[104]  P. Lamy,et al.  The Hubble Space Telescope (HST) observing campaign on comet Shoemaker-Levy 9 , 1995, Science.

[105]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[106]  C. Chapman,et al.  What are the real constraints on the existence and magnitude of the late heavy bombardment , 2007 .

[107]  H. Melosh,et al.  Magma ocean formation due to giant impacts , 1993 .

[108]  Giant impacts in the Saturnian system: A possible origin of diversity in the inner mid-sized satellites , 2011, 1106.3827.

[109]  Robert A. Marcus,et al.  THE FORMATION OF THE COLLISIONAL FAMILY AROUND THE DWARF PLANET HAUMEA , 2010, 1003.5822.

[110]  DJ SCHEERES,et al.  Stability of Relative Equilibria in the Full Two‐Body Problem , 2004, Annals of the New York Academy of Sciences.

[111]  Julie C. Castillo-Rogez,et al.  Evolution of Titan's rocky core constrained by Cassini observations , 2010 .

[112]  Erik Asphaug,et al.  NUMERICAL MODELING OF THE DISRUPTION OF COMET D/1993 F2 SHOEMAKER–LEVY 9 REPRESENTING THE PROGENITOR BY A GRAVITATIONALLY BOUND ASSEMBLAGE OF RANDOMLY SHAPED POLYHEDRA , 2012, 1207.3386.

[113]  Ignacio Mosqueira,et al.  Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites , 2003 .

[114]  G. Schubert,et al.  Saturn's satellite Rhea is a homogeneous mix of rock and ice , 2007 .

[115]  G. Stewart,et al.  ORIGIN OF THE DIFFERENT ARCHITECTURES OF THE JOVIAN AND SATURNIAN SATELLITE SYSTEMS , 2009, 1003.5737.

[116]  N. Coltice,et al.  Thermo‐mechanical adjustment after impacts during planetary growth , 2007 .

[117]  D. Kring,et al.  40Ar‐39Ar ages of H‐chondrite impact melt breccias , 2009 .

[118]  Gabriel Tobie,et al.  Titan's internal structure inferred from a coupled thermal-orbital model , 2005 .

[119]  R. Canup Dynamics of Lunar Formation , 2004 .

[120]  R. Canup,et al.  Evolution of a Terrestrial Multiple-Moon System , 1998 .

[121]  S. Cornell,et al.  A Giant Impact Origin of Pluto-Charon , 2005 .

[122]  P. Thomas,et al.  The Equatorial Ridges of Pan and Atlas: Terminal Accretionary Ornaments? , 2007, Science.

[123]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[124]  P. Nicholson,et al.  Turbulent viscosity and Jupiter's tidal Q , 1977 .

[125]  M. Showalter,et al.  Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites , 2011 .

[126]  川上 紳一,et al.  Impact Cratering:A Geologic Process Oxford Monographs on Geology and Geophysics No.11 H.,J.MELOSH , 1989 .

[127]  Julio A. Fernández,et al.  Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals , 1984 .

[128]  D. Turrini,et al.  Planetesimals and Satellitesimals: Formation of the Satellite Systems , 2009, 0906.0353.

[129]  H. Melosh,et al.  The origin of the moon and the single-impact hypothesis III. , 1991, Icarus.

[130]  R. Kirk,et al.  The lakes of Titan , 2006, Nature.

[131]  H. Melosh,et al.  Melt Production in Oblique Impacts , 1999 .

[132]  H. Miyamoto,et al.  Dust levitation as a major resurfacing process on the surface of a saturnian icy satellite, Atlas , 2012 .

[133]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[134]  Derek C. Richardson,et al.  The formation of asteroid satellites in large impacts: Results from numerical simulations , 2004 .

[135]  F. Nimmo,et al.  Recent orbital evolution and the internal structures of Enceladus and Dione , 2009 .

[136]  P. Thomas Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission , 2010 .

[137]  Jonathan I. Lunine,et al.  Saturn's moon Phoebe as a captured body from the outer Solar System , 2005, Nature.

[138]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[139]  K. Tsiganis,et al.  Constructing the secular architecture of the solar system. I. The giant planets , 2009, 0909.1886.

[140]  Kevin Zahnle,et al.  Secondary and sesquinary craters on Europa , 2008 .

[141]  Harold F. Levison,et al.  Constructing the secular architecture of the solar system II: The terrestrial planets , 2009, 0909.1891.

[142]  Darin Ragozzine,et al.  A collisional family of icy objects in the Kuiper belt , 2007, Nature.

[143]  G. Tobie,et al.  Can large icy moons accrete undifferentiated , 2012 .

[144]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[145]  J. Arlot,et al.  Strong tidal dissipation in Io and Jupiter from astrometric observations , 2009, Nature.

[146]  W. Benz,et al.  A hit-and-run giant impact scenario , 2012, 1207.5224.

[147]  S. Charnoz,et al.  STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.

[148]  Matthew Holman,et al.  Long-Term Stability of Planets in Binary Systems , 1996 .

[149]  Eiichiro Kokubo,et al.  FORMATION OF TERRESTRIAL PLANETS FROM PROTOPLANETS UNDER A REALISTIC ACCRETION CONDITION , 2010, 1003.4384.

[150]  J. Chambers On the stability of a planet between Mars and the asteroid belt: Implications for the Planet V hypothesis , 2007 .

[151]  Rosaly M. C. Lopes,et al.  Mountains on Titan observed by Cassini Radar , 2006 .

[152]  Konstantin Batygin,et al.  EARLY DYNAMICAL EVOLUTION OF THE SOLAR SYSTEM: PINNING DOWN THE INITIAL CONDITIONS OF THE NICE MODEL , 2010, 1004.5414.

[153]  R. Canup,et al.  Origin of a partially differentiated Titan , 2010 .

[154]  H. Alfvén,et al.  Evolution of the Solar System , 1976 .