Theoretical Aspects of Computer Software

We present a logic that can express properties of freshness, secrecy, structure, and behavior of concurrent systems. In addition to standard logical and temporal operators, our logic includes spatial operations corresponding to composition, local name restriction, and a primitive fresh name quantifier. Properties can also be defined by recursion; a central theme of this paper is then the combination of a logical notion of freshness with inductive and coinductive definitions of properties.

[1]  Andrew P. Tolmach,et al.  From ML to Ada: Strongly-typed language interoperability via source translation , 1998, Journal of Functional Programming.

[2]  John C. Reynolds,et al.  Definitional Interpreters Revisited , 1998, High. Order Symb. Comput..

[3]  Jens Palsberg,et al.  Closure analysis in constraint form , 1995, TOPL.

[4]  Jens Otten,et al.  linTAP: A Tableau Prover for Linear Logic , 1999, TABLEAUX.

[5]  Peter W. O'Hearn,et al.  The Logic of Bunched Implications , 1999, Bulletin of Symbolic Logic.

[6]  Keye Martin A Principle of Induction , 2001, CSL.

[7]  Flemming Nielson,et al.  Program transformations in a denotational setting , 1981, ACM Trans. Program. Lang. Syst..

[8]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[9]  Jean Goubault-Larrecq,et al.  Reflecting BDDs in Coq , 2000, ASIAN.

[10]  Flemming Nielson,et al.  Principles of Program Analysis , 1999, Springer Berlin Heidelberg.

[11]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[12]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[13]  Peter Z. Revesz,et al.  A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-Order Constraints , 1993, Theor. Comput. Sci..

[14]  Peter Sestoft,et al.  Replacing function parameters by global variables , 1989, FPCA.

[15]  John C. Reynolds,et al.  Definitional Interpreters for Higher-Order Programming Languages , 1972, ACM '72.

[16]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[17]  Christoph Sprenger,et al.  A Verified Model Checker for the Modal µ-calculus in Coq , 1998, TACAS.

[18]  Neil D. Jones,et al.  Computability and complexity - from a programming perspective , 1997, Foundations of computing series.

[19]  Nuel Belnap,et al.  Linear Analytic Tableaux , 1995, TABLEAUX.

[20]  Olin Shivers,et al.  Control-flow analysis of higher-order languages of taming lambda , 1991 .

[21]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[22]  Mitchell Wand,et al.  Lightweight closure conversion , 1997, TOPL.

[23]  Mitchell Wand,et al.  Specifying the correctness of binding-time analysis , 1993, POPL '93.

[24]  Ron van der Meyden The Complexity of Querying Indefinite Data about Linearly Ordered Domains , 1997, J. Comput. Syst. Sci..

[25]  Mitchell Wand,et al.  Set constraints for destructive array update optimization , 1998, Proceedings of the 1998 International Conference on Computer Languages (Cat. No.98CB36225).

[26]  Stephen G. Simpson,et al.  Ordinal numbers and the Hilbert basis theorem , 1988, Journal of Symbolic Logic.

[27]  Mads Tofte,et al.  Region-based Memory Management , 1997, Inf. Comput..

[28]  Kumar Neeraj Verma Reflecting Symbolic Model Checking in Coq , 2000 .

[29]  Keye Martin,et al.  The Measurement Process in Domain Theory , 2000, ICALP.

[30]  Michael W. Mislove,et al.  A foundation for computation , 2000 .

[31]  David J. Pym,et al.  On bunched predicate logic , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).