Nanobiotechnologies for the detection and reduction of pathogens.

Advances in the manipulation of nanomaterials has permitted the development of nanobiotechnology with enhanced sensitivities and improved response times. Low levels of infection of the major pathogens require the need for sensitive detection platforms and the properties of nanomaterials make them suitable for the development of assays with enhanced sensitivity, improved response time and increased portability. Nanobiotechnologies focusing on the key requirements of signal amplification and pre-concentration for the development of sensitive assays for food-borne pathogen detection in food matrices will be described and evaluated. The potential that exists for the use of nanomaterials as antimicrobial agents will also be examined.

[1]  Xi Chen,et al.  Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods , 2011, Nucleic acids research.

[2]  Cher Ming Tan,et al.  Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. , 2010, Nanoscale.

[3]  Susan Z. Hua,et al.  An Overview of Recent Strategies in Pathogen Sensing , 2009, Sensors.

[4]  Haibo Huang,et al.  Magnetic Nanoparticle Based Magnetophoresis for Efficient Separation of E. coli O157:H7 , 2011 .

[5]  Werasak Surareungchai,et al.  Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium. , 2011, Biosensors & bioelectronics.

[6]  P. Vikesland,et al.  Nanomaterial enabled biosensors for pathogen monitoring - a review. , 2010, Environmental science & technology.

[7]  H. Sue,et al.  Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. , 2009, Journal of food science.

[8]  Joseph Irudayaraj,et al.  Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes , 2011, Analytical and bioanalytical chemistry.

[9]  T. V. Duncan,et al.  Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors , 2011, Journal of Colloid and Interface Science.

[10]  Lisa R. Hilliard,et al.  A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Wick,et al.  Carbon nanotubes - curse or blessing. , 2011, Current medicinal chemistry.

[12]  Khalil Arshak,et al.  An overview of foodborne pathogen detection: in the perspective of biosensors. , 2010, Biotechnology advances.

[13]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[14]  J. Takkinen,et al.  Zoonoses in the European Union: origin, distribution and dynamics - the EFSA-ECDC summary report 2009. , 2011, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[15]  Michael Cooley,et al.  Sensitive Detection of Shiga Toxin 2 and Some of Its Variants in Environmental Samples by a Novel Immuno-PCR Assay , 2011, Applied and Environmental Microbiology.

[16]  Adrian D. C. Chan,et al.  Identification of Listeria Species Using a Low-Cost Surface-Enhanced Raman Scattering System With Wavelet-Based Signal Processing , 2009, IEEE Transactions on Instrumentation and Measurement.

[17]  M. S. Thakur,et al.  Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens , 2010, Analytical and bioanalytical chemistry.

[18]  Richard O'Kennedy,et al.  Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins , 2009, Sensors.

[19]  Willy Verstraete,et al.  Biogenic Silver for Disinfection of Water Contaminated with Viruses , 2009, Applied and Environmental Microbiology.

[20]  Paul Leonard,et al.  The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. , 2006, International journal of biological macromolecules.

[21]  Ismail Hakki Boyaci,et al.  MULTIPLEX DETECTION OF ESCHERICHIA COLI AND SALMONELLA ENTERITIDIS BY USING QUANTUM DOT-LABELED ANTIBODIES , 2009 .

[22]  Rashid Bashir,et al.  Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators , 2004 .

[23]  Yuan Yao,et al.  Carbohydrate nanoparticle‐mediated colloidal assembly for prolonged efficacy of bacteriocin against food pathogen , 2011, Biotechnology and bioengineering.

[24]  Anima Nanda,et al.  Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. , 2010, Colloids and surfaces. B, Biointerfaces.

[25]  S Munasinghe,et al.  Public health response to an avian influenza A (H5N1) poultry outbreak in Suffolk, United Kingdom, in November 2007. , 2008, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[26]  Kai Xu,et al.  Recent Development of Nano-Materials Used in DNA Biosensors , 2009, Sensors.

[27]  Andre Senecal,et al.  Cy5 labeled antimicrobial peptides for enhanced detection of Escherichia coli O157:H7. , 2008, Biosensors & bioelectronics.

[28]  E. Alocilja,et al.  Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. , 2007, Biosensors & bioelectronics.

[29]  J. Oliver,et al.  Recent findings on the viable but nonculturable state in pathogenic bacteria. , 2010, FEMS microbiology reviews.

[30]  Paul Mulvaney,et al.  Gold nanorods: Synthesis, characterization and applications , 2005 .

[31]  Joseph Irudayaraj,et al.  Gold nanorod probes for the detection of multiple pathogens. , 2008, Small.

[32]  Chad A Mirkin,et al.  Nonenzymatic detection of bacterial genomic DNA using the bio bar code assay. , 2007, Analytical chemistry.

[33]  Carl J. Seliskar,et al.  Determination of viable Escherichia coli using antibody-coated paramagnetic beads with fluorescence detection , 2009, Analytical and bioanalytical chemistry.

[34]  K. Rose,et al.  Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. , 2006, Angewandte Chemie.

[35]  Ahjeong Son,et al.  Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157:H7 quantification. , 2010, Analytica chimica acta.

[36]  L. Di Sipio,et al.  A study of the electronic structure of the thiocyanate ion , 1966 .

[37]  T. Uemura,et al.  Comparison of latex agglutination and ELIS A for the detection of Clostridium perfringens type A enterotoxin in faeces , 1986 .

[38]  Nuo Duan,et al.  Ultrasensitive chemiluminescent immunoassay of Salmonella with silver enhancement of nanogold labels. , 2011, Luminescence : the journal of biological and chemical luminescence.

[39]  T. Krauss,et al.  Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. , 2008, Analytical chemistry.

[40]  Min-Gon Kim,et al.  High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. , 2008, Analytica chimica acta.

[41]  Robert N Grass,et al.  Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. , 2007, Environmental science & technology.

[42]  Richard O'Kennedy,et al.  Carbon nanotube-based transducers for immunoassays , 2009 .

[43]  Nalinikanth Kotagiri,et al.  Photothermal antimicrobial nanotherapy and nanodiagnostics with self‐assembling carbon nanotube clusters , 2007, Lasers in surgery and medicine.

[44]  Yanbin Li,et al.  Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. , 2005, Journal of food protection.

[45]  Biao Suo,et al.  Molecular methods for the detection and characterization of foodborne pathogens , 2010 .

[46]  G. Lowry,et al.  Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. , 2009, Nature nanotechnology.

[47]  J. Riu,et al.  Real-time potentiometric detection of bacteria in complex samples. , 2010, Analytical chemistry.

[48]  G. D. Nessim,et al.  Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. , 2010, Nanoscale.

[49]  Paresh Chandra Ray,et al.  Gold Nanorod Based Selective Identification of Escherichia coli Bacteria Using Two-Photon Rayleigh Scattering Spectroscopy. , 2009, ACS nano.

[50]  A. Conte,et al.  Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. , 2011, International journal of food microbiology.

[51]  M. Loessner,et al.  Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material , 2009, Applied and Environmental Microbiology.

[52]  Geoffrey M. Spinks,et al.  The optimum functionalization of carbon nanotube/ferritin composites , 2008 .

[53]  Tero Soukka,et al.  Highly sensitive immunoassay of free prostate-specific antigen in serum using europium(III) nanoparticle label technology. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[54]  J. Wolff,et al.  Acidimétrie dans les solvants organiques , 1947 .

[55]  Ravi Naidu,et al.  A Critical Review on Biogenic Silver Nanoparticles and their Antimicrobial Activity , 2011 .

[56]  Giovanni Fanchini,et al.  Optical anisotropy in single-walled carbon nanotube thin films: implications for transparent and conducting electrodes in organic photovoltaics. , 2008, Nano letters.

[57]  Mieke Uyttendaele,et al.  Alternative microbial methods: An overview and selection criteria. , 2010, Food microbiology.

[58]  Juan Tang,et al.  Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. , 2010, Journal of agricultural and food chemistry.

[59]  L. Jaykus,et al.  Detection of pathogens in foods: the current state-of-the-art and future directions , 2011, Critical reviews in microbiology.

[60]  Jeeseong Hwang,et al.  Quantitative characterization of quantum dot‐labeled lambda phage for Escherichia coli detection , 2009, Biotechnology and bioengineering.

[61]  C. Huang,et al.  Light scattering sensing detection of pathogens based on the molecular recognition of immunoglobulin with cell wall-associated protein A. , 2007, Analytica chimica acta.

[62]  Ya‐Ping Sun,et al.  Enhancing antimicrobial activity of lysozyme against Listeria monocytogenes using immunonanoparticles. , 2007, Journal of food protection.

[63]  A. Majumdar,et al.  Nanomechanical detection of DNA melting on microcantilever surfaces. , 2006, Analytical chemistry.

[64]  Peter Eaton,et al.  Gold nanoparticles for the development of clinical diagnosis methods , 2008, Analytical and bioanalytical chemistry.

[65]  Lauro T. Kubota,et al.  Biosensors based on gold nanostructures , 2011 .

[66]  Anders Wolff,et al.  Dual enlargement of gold nanoparticles: from mechanism to scanometric detection of pathogenic bacteria. , 2011, Small.

[67]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[68]  John G. Bruno,et al.  Plastic-Adherent DNA Aptamer-Magnetic Bead and Quantum Dot Sandwich Assay for Campylobacter Detection , 2009, Journal of Fluorescence.

[69]  Jianghong Meng,et al.  Advanced Technologies for Pathogen and Toxin Detection in Foods: Current Applications and Future Directions , 2009 .

[70]  F. Cui,et al.  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. , 2000, Journal of biomedical materials research.

[71]  Pratibha Pandey,et al.  Colorimetric detection of nucleic acid signature of shiga toxin producing Escherichia coli using gold nanoparticles. , 2010, Journal of nanoscience and nanotechnology.

[72]  Werner J. Blau,et al.  Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area , 2004 .

[73]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[74]  Hao Li,et al.  Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7 , 2009, Journal of applied microbiology.

[75]  Ashok Mulchandani,et al.  Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. , 2010, Biosensors & bioelectronics.

[76]  Jie Zhang,et al.  A highly sensitive detection for foot-and-mouth disease virus by gold nanopariticle improved immuno-PCR , 2011, Virology Journal.

[77]  Zhu Chang,et al.  Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization , 2006 .

[78]  T. Krauss,et al.  Detection of single bacterial pathogens with semiconductor quantum dots. , 2005, Analytical chemistry.

[79]  V. Wu,et al.  Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. , 2008, Journal of microbiological methods.

[80]  Xiu‐Ping Yan,et al.  Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. , 2010, Environmental science & technology.

[81]  Dipankar Chakravorty,et al.  Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum , 2011, Applied Microbiology and Biotechnology.

[82]  Ismail Hakki Boyaci,et al.  SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. , 2011, The Analyst.

[83]  Lai,et al.  Detection of Clostridium botulinum neurotoxin type A using immuno‐PCR , 2001, Letters in applied microbiology.

[84]  Willy Verstraete,et al.  The antibacterial activity of biogenic silver and its mode of action , 2011, Applied Microbiology and Biotechnology.

[85]  Christof M Niemeyer,et al.  Sensitivity by combination: immuno-PCR and related technologies. , 2008, The Analyst.

[86]  Bosoon Park,et al.  An Au/Si hetero-nanorod-based biosensor for Salmonella detection , 2008, Nanotechnology.

[87]  Dermot Diamond,et al.  The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors , 2010, Analytical and bioanalytical chemistry.

[88]  Paul Leonard,et al.  Nanomedicine: barcodes check out prostate cancer. , 2010, Nature nanotechnology.

[89]  F. Şahin,et al.  Towards single-microorganism detection using surface-enhanced Raman spectroscopy , 2007 .

[90]  Dermot Diamond,et al.  Polyaniline nanofibres as templates for the covalent immobilisation of biomolecules , 2011 .

[91]  Mukul Das,et al.  Need for safety of nanoparticles used in food industry. , 2011, Journal of biomedical nanotechnology.

[92]  H. H. Lara,et al.  Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds , 2011, Journal of nanobiotechnology.

[93]  Hans Bouwmeester,et al.  Review of health safety aspects of nanotechnologies in food production. , 2009, Regulatory toxicology and pharmacology : RTP.

[94]  Raj Mutharasan,et al.  Preparation-free method for detecting Escherichia coli O157:H7 in the presence of spinach, spring lettuce mix, and ground beef particulates. , 2007, Journal of food protection.

[95]  Amitava Mukherjee,et al.  Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. , 2011, Colloids and surfaces. B, Biointerfaces.

[96]  W. Dungchai,et al.  Salmonella typhi determination using voltammetric amplification of nanoparticles: A highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label , 2008 .

[97]  Ronghua Yang,et al.  Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. , 2008, Analytical chemistry.

[98]  A. Conte,et al.  Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. , 2011, Journal of dairy science.

[99]  Yanbin Li,et al.  Quantum dots as fluorescent labels for quantitative detection of Salmonella typhimurium in chicken carcass wash water. , 2005, Journal of food protection.

[100]  E. Alocilja,et al.  Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. , 2009, Biosensors & bioelectronics.

[101]  Giorgio Brandi,et al.  Direct detection of Listeria monocytogenes from milk by magnetic based DNA isolation and PCR , 2004 .

[102]  Paul Leonard,et al.  Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. , 2006, Journal of microbiological methods.

[103]  E. Alocilja,et al.  A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens. , 2010, Biosensors & bioelectronics.

[104]  E Kakizaki,et al.  Detection of bacterial antigens using immuno‐PCR , 1996, Letters in applied microbiology.

[105]  Justin O'Grady,et al.  High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. , 2011, Biosensors & bioelectronics.

[106]  Nengqin Jia,et al.  Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. , 2009, Journal of agricultural and food chemistry.

[107]  Anant Kumar Singh,et al.  Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. , 2010, Chemistry.

[108]  Panagiotis Dallas,et al.  Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. , 2011, Advances in colloid and interface science.

[109]  Hui Chen,et al.  A novel homogenous detection method based on the self-assembled DNAzyme labeled DNA probes with SWNT conjugates and its application in detecting pathogen. , 2011, Biosensors & bioelectronics.

[110]  Juan Jiang,et al.  Nano-biosensor development for bacterial detection during human kidney infection: Use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA) , 2004, Glycoconjugate Journal.

[111]  Lain-Jong Li,et al.  Graphene-based biosensors for detection of bacteria and their metabolic activities , 2011 .

[112]  Raj Mutharasan,et al.  A method of measuring Escherichia coli 0157:H7 at 1 cell/mL in 1 liter sample using antibody functionalized piezoelectric-excited millimeter-sized cantilever sensor. , 2007, Environmental science & technology.

[113]  P. He,et al.  Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes , 2005 .

[114]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[115]  Xiaohua He,et al.  Development of a novel immuno-PCR assay for detection of ricin in ground beef, liquid chicken egg, and milk. , 2010, Journal of food protection.

[116]  Graham A. Bonwick,et al.  Aptamers for safety and quality assurance in the food industry: detection of pathogens , 2011 .

[117]  Paresh Chandra Ray,et al.  Targeted highly sensitive detection of multi-drug resistant Salmonella DT104 using gold nanoparticles. , 2011, Chemical communications.

[118]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[119]  Yanbin Li,et al.  Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. , 2004, Analytical chemistry.

[120]  Yanbin Li,et al.  Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. , 2006, The Analyst.

[121]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[122]  Jeong-O Lee,et al.  Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. , 2008, Small.

[123]  Lee-Ann Jaykus,et al.  Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. , 2009, Molecular and cellular probes.

[124]  P Tian,et al.  Detection of norovirus capsid proteins in faecal and food samples by a real time immuno‐PCR method , 2006, Journal of applied microbiology.

[125]  Sihai Chen,et al.  Plasmonic detection of a model analyte in serum by a gold nanorod sensor. , 2007, Analytical chemistry.

[126]  L. Satyanarayana,et al.  Device optimization of CO2 gas sensor using planar technology. , 2007 .

[127]  Yuxiao Cheng,et al.  Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. , 2009, Talanta.