Optical Abelian Lattice Gauge Theories

We discuss a general framework for the realization of a family of abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable to quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions originally proposed by Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4x4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices where we discuss in detail a protocol for the preparation of the ground state. We also comment on the relation between standard compact U(1) LGT and the model considered.

[1]  Maciej Lewenstein,et al.  An optical-lattice-based quantum simulator for relativistic field theories and topological insulators , 2011, 1105.0932.

[2]  J. Cirac,et al.  Dipole blockade and quantum information processing in mesoscopic atomic ensembles. , 2000, Physical review letters.

[3]  Quantum link models: A discrete approach to gauge theories☆ , 1996, hep-lat/9609042.

[4]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[5]  Ling Wang,et al.  Monte Carlo simulation with tensor network states , 2010, 1010.5450.

[6]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[7]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[8]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[9]  Samuel A. Ocko,et al.  Nonperturbative gadget for topological quantum codes. , 2011, Physical review letters.

[10]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[11]  D. Rohrlich,et al.  Lattice Gauge Magnets: Local Isospin From Spin , 1990 .

[12]  Three-body interactions with cold polar molecules , 2007, cond-mat/0703688.

[13]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[14]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[15]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[16]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[17]  John B. Kogut,et al.  An introduction to lattice gauge theory and spin systems , 1979 .

[18]  A. Polyakov Compact gauge fields and the infrared catastrophe , 1975 .

[19]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[20]  D. Horn,et al.  Hamiltonian approach to Z (N) lattice gauge theories , 1979 .

[21]  P. Orland Exact solution of a quantum gauge magnet in 2 + 1 dimensions , 1992 .

[22]  M. Lewenstein,et al.  Quantum simulation of an extra dimension. , 2011, Physical review letters.

[23]  G. Evenbly,et al.  Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law , 2009, 0903.5017.

[24]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[25]  Guifre Vidal,et al.  Entanglement renormalization and gauge symmetry , 2010, 1007.4145.

[26]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[27]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[28]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[29]  M. Troyer,et al.  Stripes in the two-dimensional t-J model with infinite projected entangled-pair states , 2011, 1104.5463.

[30]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[31]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[32]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[33]  P Zoller,et al.  Atomic quantum simulator for lattice gauge theories and ring exchange models. , 2005, Physical review letters.

[34]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[35]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[36]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[37]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[38]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[39]  A W Sandvik,et al.  Variational quantum Monte Carlo simulations with tensor-network states. , 2007, Physical review letters.

[40]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[41]  H. Fritzsch Quarks , 2022, Physics Subject Headings (PhySH).

[42]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[43]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[44]  I Bloch,et al.  Experimental realization of strong effective magnetic fields in an optical lattice. , 2011, Physical review letters.

[45]  D. Horn Finite matrix models with continuous local gauge invariance , 1981 .

[46]  Norbert Schuch,et al.  Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions. , 2008, Physical review letters.

[47]  P. Zoller,et al.  Mesoscopic Rydberg gate based on electromagnetically induced transparency. , 2008, Physical review letters.

[48]  Eric Jeckelmann Dynamical density-matrix renormalization-group method , 2002 .

[49]  M. Lewenstein,et al.  Can one trust quantum simulators? , 2011, Reports on progress in physics. Physical Society.

[50]  R. Brower,et al.  QCD as a quantum link model , 1997, hep-th/9704106.

[51]  Benni Reznik,et al.  Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms. , 2011, Physical review letters.

[52]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[53]  Random percolation as a gauge theory , 2005, cond-mat/0502339.

[54]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[55]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .