High return level estimates of daily ERA-5 precipitation in Europe estimated using regionalized extreme value distributions

Accurate estimation of daily rainfall return levels associated with large return periods is needed for a number of hydrological planning purposes, including protective infrastructure, dams, and retention basins. This is especially relevant at small spatial scales. The ERA-5 reanalysis product provides seasonal daily precipitation over Europe on a 0.25◦×0.25◦ grid (about 27 × 27 [km]). This translates more than 20,000 land grid points and leads to models with a large number of parameters when estimating return levels. To bypass this abundance of parameters, we build on the regional frequency analysis (RFA), a well-known strategy in statistical hydrology. This approach consists in identifying homogeneous regions, by gathering locations with similar distributions of extremes up to a normalizing factor and developing sparse regional models. In particular, we propose a step-by-step blueprint that leverages a recently developed and fast clustering algorithm to infer return level estimates over large spatial domains. This enables us to produce maps of return level estimates of ERA-5 reanalysis daily precipitation over continental Europe for various return periods and seasons. We discuss limitations and practical challenges and also provide a git hub repository. We show that a relatively parsimonious model with only a spatially varying scale parameter can compete well against statistical models of higher complexity.

[1]  Clément Chevalier,et al.  Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland , 2016 .

[2]  D. Maraun Reply to “Comment on ‘Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue’” , 2013 .

[3]  J. Blanchet,et al.  A regional model for extreme rainfall based on weather patterns subsampling , 2016 .

[4]  S. Sorooshian,et al.  A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons , 2018 .

[5]  M. Stein Parametric models for distributions when interest is in extremes with an application to daily temperature , 2020 .

[6]  C. Prieur,et al.  Flexible semiparametric generalized Pareto modeling of the entire range of rainfall amount , 2019, Environmetrics.

[7]  M. Kašpar,et al.  Spatial patterns and time distribution of central European extreme precipitation events between 1961 and 2013 , 2019, International Journal of Climatology.

[8]  Francis W. Zwiers,et al.  Consistency of Temperature and Precipitation Extremes across Various Global Gridded In Situ and Reanalysis Datasets , 2014 .

[9]  A. Berg,et al.  Present and future Köppen-Geiger climate classification maps at 1-km resolution , 2018, Scientific Data.

[11]  Mathieu Vrac,et al.  Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France , 2013 .

[12]  O. Martius,et al.  A Comparison of Moderate and Extreme ERA‐5 Daily Precipitation With Two Observational Data Sets , 2021, Earth and Space Science.

[13]  Michel Lang,et al.  Review of trend analysis and climate change projections of extreme precipitation and floods in Europe , 2014 .

[14]  Véronique Ducrocq,et al.  A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors , 2008 .

[15]  U. Germann,et al.  A 12‐year radar‐based climatology of daily and sub‐daily extreme precipitation over the Swiss Alps , 2018 .

[16]  C. Frei,et al.  The climate of daily precipitation in the Alps: development and analysis of a high‐resolution grid dataset from pan‐Alpine rain‐gauge data , 2014 .

[17]  Alan E. Gelfand,et al.  Hierarchical modeling for extreme values observed over space and time , 2009, Environmental and Ecological Statistics.

[18]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[19]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[20]  Jonathan A. Tawn,et al.  Extended generalised Pareto models for tail estimation , 2011, 1111.6899.

[21]  T. Yan,et al.  Estimation of wind speed using regional frequency analysis based on linear‐moments , 2018, International Journal of Climatology.

[22]  Bernard Desgraupes Clustering Indices , 2016 .

[23]  P. Naveau,et al.  Partitioning into hazard subregions for regional peaks‐over‐threshold modeling of heavy precipitation , 2017 .

[24]  H. Fowler,et al.  A regional frequency analysis of United Kingdom extreme rainfall from 1961 to 2000 , 2003 .

[25]  H. Fowler,et al.  New hourly extreme precipitation regions and regional annual probability estimates for the UK , 2020, International Journal of Climatology.

[26]  J. R. Wallis,et al.  Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .

[28]  Olivier Wintenberger,et al.  Some Variations on the Extremal Index , 2021, Journal of Mathematical Sciences.

[29]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[30]  Jonathan R. M. Hosking,et al.  The four-parameter kappa distribution , 1994, IBM J. Res. Dev..

[31]  P. Jones,et al.  An Ensemble Version of the E‐OBS Temperature and Precipitation Data Sets , 2018, Journal of Geophysical Research: Atmospheres.

[32]  Jean-Michel Soubeyroux,et al.  Extreme Fall 2014 Precipitation in the Cévennes Mountains , 2015 .

[33]  E. Xoplaki,et al.  A fast nonparametric spatio‐temporal regression scheme for generalized Pareto distributed heavy precipitation , 2014 .

[34]  Beatriz de la Iglesia,et al.  Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms , 2006, J. Math. Model. Algorithms.

[35]  N. Cortesi,et al.  Spatial variability of precipitation in Spain , 2014, Regional Environmental Change.

[36]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[37]  Taha B. M. J. Ouarda,et al.  Synthèse des développements récents en analyse régionale des extrêmes hydrologiques , 2008 .

[38]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[39]  C. Schär,et al.  Mesoscale precipitation variability in the region of the European Alps during the 20th century , 2002 .

[40]  Peter J. Rousseeuw,et al.  Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms , 2020, Inf. Syst..

[41]  R. Ludwig,et al.  Ten-year return levels of sub-daily extreme precipitation over Europe , 2021 .

[42]  Claude J. P. Bélisle,et al.  A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America , 2017 .

[43]  Vijay P. Singh,et al.  Regionalization and spatial changing properties of droughts across the Pearl River basin, China , 2012 .

[44]  M. Stephens,et al.  K-Sample Anderson–Darling Tests , 1987 .

[45]  atherine,et al.  Finding the number of clusters in a data set : An information theoretic approach C , 2003 .

[46]  A. Jenkinson The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .

[47]  Taha B. M. J. Ouarda,et al.  La régionalisation des précipitations : une revue bibliographique des développements récents , 2003 .

[48]  Philippe Naveau,et al.  Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection , 2016 .

[49]  C. Franzke,et al.  Evaluation of Daily Precipitation Extremes in Reanalysis and Gridded Observation‐Based Data Sets Over Germany , 2020, Geophysical Research Letters.

[50]  D. Rybski,et al.  Damage and protection cost curves for coastal floods within the 600 largest European cities , 2018, Scientific Data.

[51]  B. Poschlod,et al.  Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria , 2021, Natural Hazards and Earth System Sciences.

[52]  M. Borga,et al.  Orographic Effect on Extreme Precipitation Statistics Peaks at Hourly Time Scales , 2020, Geophysical Research Letters.

[53]  Betül Saf Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey , 2009 .

[54]  Daniel Cooley,et al.  Return Periods and Return Levels Under Climate Change , 2013 .

[55]  H. Akaike Factor analysis and AIC , 1987 .

[56]  Hossein Malekinezhad,et al.  Regional frequency analysis of daily rainfall extremes using L-moments approach , 2014 .

[57]  A. Favre,et al.  Stochastic generation of multi-site daily precipitation focusing on extreme events , 2018 .

[58]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[59]  Yoshua Bengio,et al.  A hybrid Pareto model for asymmetric fat-tailed data: the univariate case , 2009 .

[60]  Eric Gilleland,et al.  Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe , 2015 .

[61]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[62]  T. Dalrymple Flood-frequency analyses, Manual of Hydrology: Part 3 , 1960 .

[63]  Orographic Effect on Extreme Precipitation Statistics Peaks at Hourly Time Scales , 2021, Geophysical Research Letters.