Infinite dimensional analysis
暂无分享,去创建一个
[1] Bert Fristedt,et al. A modern approach to probability theory , 1996 .
[2] Charalambos D. Aliprantis. Problems in equilibrium theory , 1996 .
[3] Lin Zhou,et al. The Set of Nash Equilibria of a Supermodular Game Is a Complete Lattice , 1994 .
[4] I. A. Polyrakis. Lattice-Subspaces of C[0,1] and Positive Bases , 1994 .
[5] Michael C. Mackey,et al. Chaos, Fractals, and Noise , 1994 .
[6] A. Wickstead,et al. Remarkable Classes of Unital AM-Spaces , 1993 .
[7] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[8] Bernard R Gelbaum,et al. Theorems and counterexamples in mathematics , 1993 .
[9] Maxwell B. Stinchcombe,et al. Some Measurability Results for Extrema of Random Functions Over Random Sets , 1992 .
[10] Y. Tong,et al. Convex Functions, Partial Orderings, and Statistical Applications , 1992 .
[11] Keith Devlin. Sets, functions and logic : an introduction to abstract mathematics / Keith Devlin , 1992 .
[12] Nicholas C. Yannelis,et al. Equilibrium Theory in Infinite Dimensional Spaces , 1991 .
[13] Ralph Henstock,et al. The General Theory of Integration , 1991 .
[14] Gerald Beer,et al. A Polish topology for the closed subsets of a Polish space , 1991 .
[15] Lloyd S. Shapley,et al. On Kakutani's fixed point theorem, the K-K-M-S theorem and the core of a balanced game , 1991 .
[16] M. Frantz. On Sierpiński's nonmeasurable set , 1991 .
[17] A. Rustichini,et al. Some Unpleasant Objects in a Non-separable Hilbert Space , 1991 .
[18] Matthew Foreman,et al. The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set , 1991 .
[19] Standard and Nonstandard Analysis: Fundamental Theory, Techniques, and Applications , 1990 .
[20] X. Vives. Nash equilibrium with strategic complementarities , 1990 .
[21] P. Diamond. Fixed points of iterates of multivalued mappings , 1989 .
[22] C. Aliprantis,et al. Existence and Optimality of Competitive Equilibria , 1989 .
[23] C. Gilles. Charges as equilibrium prices and asset bubbles , 1989 .
[24] Nancy L. Stokey,et al. Recursive methods in economic dynamics , 1989 .
[25] Nicholas C. Yannelis,et al. Fatou’s lemma in infinite-dimensional spaces , 1988 .
[26] Kerry Back,et al. Structure of consumption sets and existence of equilibria in infinite-dimensional spaces☆ , 1988 .
[27] G. Mehta,et al. Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar , 1987 .
[28] Caratheodory-type selections and random fixed point theorems , 1987 .
[29] Frank H. Page. The existence of optimal contracts in the principal-agent model , 1987 .
[30] I. M. Gelfand. Sur un lemme de la théorie des espaces linéaires , 1987 .
[31] A. Kechris. Classical descriptive set theory , 1987 .
[32] R. Mañé,et al. Ergodic Theory and Differentiable Dynamics , 1986 .
[33] R. Phelps,et al. THE SUPPORT FUNCTIONALS OF A CONVEX SET , 1986 .
[34] Angus E. Taylor,et al. Introduction to functional analysis, 2nd ed. , 1986 .
[35] Y. Kifer. Ergodic theory of random transformations , 1986 .
[36] E. Zeidler,et al. Fixed-point theorems , 1986 .
[37] J. E. Jayne. THEORY OF CORRESPONDENCES Including Applications to Mathematical Economics (Canadian Mathematical Society Series of Monographs and Advanced Texts) , 1985 .
[38] Kim C. Border,et al. Fixed point theorems with applications to economics and game theory: Fixed point theorems for correspondences , 1985 .
[39] M. Berliant. An equilibrium existence result for an economy with land , 1985 .
[40] D. Pollard. Convergence of stochastic processes , 1984 .
[41] L. Jones. Existence of equilibria with infinitely many consumers and infinitely many commodities: A theorem based on models of commodity differentiation , 1983 .
[42] T. Hill. Determining a Fair Border , 1983 .
[43] T. Ichiishi. Game theory for economic analysis , 1983 .
[44] A. Fryszkowski. Continuous selections for a class of non-convex multivalued maps , 1983 .
[45] A. Zaanen. Riesz Spaces, II , 1983 .
[46] I. Ekeland,et al. Infinite-Dimensional Optimization And Convexity , 1983 .
[47] Gregory H. Moore. Zermelo's Axiom of Choice: Its Origins, Development, and Influence , 1982 .
[48] D. Newton. AN INTRODUCTION TO ERGODIC THEORY (Graduate Texts in Mathematics, 79) , 1982 .
[49] John R. Giles,et al. Convex analysis with application in the differentiation of convex functions , 1982 .
[50] L. Blume. New techniques for the study of stochastic equilibrium processes , 1982 .
[51] K. Prikry,et al. Liapounoff’s theorem for nonatomic, finitely-additive, bounded, finite-dimensional, vector-valued measures , 1981 .
[52] Hans Jarchow,et al. Locally convex spaces , 1981 .
[53] Hans Jarchow,et al. Topological Vector Spaces , 1981 .
[54] Carl A. Futia,et al. RATIONAL EXPECTATIONS IN STATIONARY LINEAR MODELS , 1981 .
[55] W. Stromquist. How to Cut a Cake Fairly , 1980 .
[56] R. Chacon,et al. Continuity and compactness of measures , 1980 .
[57] C. Aliprantis,et al. Minimal topologies and $L_{p}$-spaces , 1980 .
[58] A. P. Robertson,et al. Topological Vector Spaces , 1980 .
[59] h.c. Gottfried Köthe. Topological Vector Spaces II , 1979 .
[60] P. Cousot,et al. Constructive versions of tarski's fixed point theorems , 1979 .
[61] P. Meyer,et al. Probabilities and potential C , 1978 .
[62] Konrad Jacobs,et al. Measure and integral , 1978 .
[63] James Dugundji,et al. KKM maps and variational inequalities , 1978 .
[64] T. Kamae,et al. Stochastic Inequalities on Partially Ordered Spaces , 1977 .
[65] C. Rogers,et al. The extremal structure of convex sets , 1977 .
[66] J. Diestel. Remarks on Weak Compactness in L1(μ,X) , 1977, Glasgow Mathematical Journal.
[67] James W. Roberts. A compact convex set with no extreme points , 1977 .
[68] C. Castaing,et al. Convex analysis and measurable multifunctions , 1977 .
[69] E. Tarafdar,et al. On nonlinear variational inequalities , 1977 .
[70] K. D. Stroyan,et al. Introduction to the theory of infinitesimals , 1976 .
[71] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[72] R. Holmes. Geometric Functional Analysis and Its Applications , 1975 .
[73] M. Schäl. On dynamic programming: Compactness of the space of policies , 1975 .
[74] On the measurability of functions of two variables , 1975 .
[75] R. G. Vickson,et al. A Unified Approach to Stochastic Dominance , 1975 .
[76] Igor Kluvánek,et al. Vector measures and control systems , 1975 .
[77] W. Hildenbrand,et al. Stochastic processes of temporary equilibria , 1974 .
[78] Mir Srinivasapur Khaleelulla. Ordered Topological Vector Spaces and Groups , 1974 .
[79] A. Mas-Colell. Continuous and smooth consumers: Approximation theorems , 1974 .
[80] H. O. Fattorini,et al. The time-optimal control problem in Banach spaces , 1974 .
[81] R. Walker,et al. The Stone-Cech Compactification , 1974 .
[82] D. Fremlin,et al. Topological Riesz Spaces and Measure Theory , 1974 .
[83] W. Hildenbrand. Core and Equilibria of a Large Economy. , 1974 .
[84] D. Ornstein. Ergodic theory, randomness, and dynamical systems , 1974 .
[85] D. Tacon. Weak compactness in normed linear spaces , 1972, Journal of the Australian Mathematical Society.
[86] T. Bewley. Existence of equilibria in economies with infinitely many commodities , 1972 .
[87] K. Vind,et al. A THIRD REMARK ON THE CORE OF AN ATOMLESS ECONOMY , 1972 .
[88] C. Dellacherie. Capacités et processus stochastiques , 1972 .
[89] On set correspondences into uniformly convex Banach spaces , 1972 .
[90] Zbigniew Semadeni,et al. Banach spaces of continuous functions , 1971 .
[91] R. E. Smithson,et al. Fixed points of order preserving multifunctions , 1971 .
[92] A. Robertson,et al. TOPOLOGICAL VECTOR SPACES AND DISTRIBUTIONS VOL. 1 , 1970 .
[93] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[94] R. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .
[95] G. Jameson. Ordered Linear Spaces , 1970 .
[96] Robert M. Blumenthal,et al. On continuous collections of measures , 1970 .
[97] S. Nadler. Multi-valued contraction mappings. , 1969 .
[98] J. Dieudonne. Foundations of Modern Analysis , 1969 .
[99] R. Jennrich. Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .
[100] E. Wattel,et al. A general fixed point theorem , 1969 .
[101] C. Ionescu Tulcea,et al. Topics in the Theory of Lifting , 1969 .
[102] D. Daley. Stochastically monotone Markov Chains , 1968 .
[103] M. E. Noble. Elements de Mathematique. Livre VI, Integration, Chaps 1,..., 4 , 1968, The Mathematical Gazette.
[104] R. Sine. Geometric theory of a single Markov operator , 1968 .
[105] Constantin Carathéodory,et al. Vorlesungen über reelle Funktionen , 1968 .
[106] George M. Bergman,et al. A FIXED-POINT THEOREM FOR INWARD AND OUTWARD MAPS , 1968 .
[107] M. Shubik,et al. Convex structures and economic theory , 1968 .
[108] E. Denardo. CONTRACTION MAPPINGS IN THE THEORY UNDERLYING DYNAMIC PROGRAMMING , 1967 .
[109] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[110] C. Castaing. Sur les multi-applications mesurables , 1967 .
[111] W. Rudin. Real and complex analysis , 1968 .
[112] P. J. Cohen. Set Theory and the Continuum Hypothesis , 1966 .
[113] G. Stampacchia,et al. On some non-linear elliptic differential-functional equations , 1966 .
[114] N. Levinson,et al. Minimax, Liapunov and “bang-bang” , 1966 .
[115] C. Olech,et al. Extremal solutions of a control system , 1966 .
[116] R. Dudley. Convergence of Baire measures , 1966 .
[117] F. Browder. Nonlinear monotone operators and convex sets in Banach spaces , 1965 .
[118] E. Effros. Convergence of closed subsets in a topological space , 1965 .
[119] R. Rockafellar,et al. On the subdifferentiability of convex functions , 1965 .
[120] Leonard J. Savage,et al. How to Gamble If You Must: Inequalities for Stochastic Processes , 1965 .
[121] L. Nachbin. Topology and order , 1965 .
[122] J. Neveu,et al. Mathematical foundations of the calculus of probability , 1965 .
[123] T. Husain. The Open Mapping and Closed Graph Theorems in Topological Vector Spaces , 1965 .
[124] J. D. Halperin,et al. The independence of the axiom of choice from the Boolean prime ideal theorem , 1964 .
[125] H. Halkin. A Generalization of LaSalle’s “Bang-Bang” Principle , 1964 .
[126] V. Strassen,et al. Me\fehler und Information , 1964 .
[127] R. C. James. Weakly compact sets , 1964 .
[128] Kennan T. Smith,et al. Linear Topological Spaces , 1966 .
[129] L. Neustadt. The existence of optimal controls in the absence of convexity conditions , 1963 .
[130] C. D. Olds. Continued Fractions: CONTINUED FRACTIONS , 1963 .
[131] W. A. J. Luxemburg,et al. Two applications of the method of construction by ultrapowers to analysis , 1962 .
[132] J. M. G. Fell,et al. A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space , 1962 .
[133] A. F. Filippov. On Certain Questions in the Theory of Optimal Control , 1962 .
[134] R. Aumann. Borel structures for function spaces , 1961 .
[135] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[136] Steven Vajda,et al. The Theory of Linear Economic Models , 1960 .
[137] A. N. Kolmogorov,et al. Foundations of the theory of probability , 1960 .
[138] K. Leeuw,et al. The representations of linear functionals by measures on sets of extreme points , 1959 .
[139] M. Sion. On general minimax theorems , 1958 .
[140] Alan J. Hoffman,et al. Systems of inequalities involving convex functions , 1957 .
[141] A. Davis,et al. A characterization of complete lattices , 1955 .
[142] A. Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .
[143] L. Hörmander. Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .
[144] G. Debreu. VALUATION EQUILIBRIUM AND PARETO OPTIMUM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.
[145] D. Blackwell. Equivalent Comparisons of Experiments , 1953 .
[146] R. Bartle,et al. Mappings between function spaces , 1952 .
[147] K. Fan. Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[148] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[149] K. Yosida,et al. Finitely additive measures , 1952 .
[150] I. Glicksberg. A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .
[151] E. Michael. Topologies on spaces of subsets , 1951 .
[152] J. L. Kelley,et al. The Tychonoff product theorem implies the axiom of choice , 1950 .
[153] H. F. Bohnenblust,et al. On a Theorem of Ville , 1949 .
[154] J. Neumann. On Rings of Operators. Reduction Theory , 1949 .
[155] P R Halmos. On A Theorem of Dieudonné. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[156] Jr. V. L. Klee. The support property of a convex set in a linear normed space , 1948 .
[157] Paul R. Halmos,et al. The range of a vector measure , 1948 .
[158] R. Arens. Duality in linear spaces , 1947 .
[159] W. F. Eberlein. Weak Compactness in Banach Spaces: I. , 1947, Proceedings of the National Academy of Sciences of the United States of America.
[160] G. Mackey. On Convex Topological Linear Spaces. , 1943, Proceedings of the National Academy of Sciences of the United States of America.
[161] Some notes on the separation of convex sets , 1942 .
[162] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[163] M. Krein,et al. On Regularly Convex Sets in the Space Conjugate to a Banach Space , 1940 .
[164] M. Kreĭn,et al. On extreme points of regular convex sets , 1940 .
[165] Motokiti Kondô. Sur l'uniformisation des complémentaires analytiques et les ensembles projectifs de la seconde classe , 1939 .
[166] B. Pettis. On integration in vector spaces , 1938 .
[167] E. T. Bell,et al. Men of Mathematics , 1937, Nature.
[168] M. Zorn. A remark on method in transfinite algebra , 1935 .
[169] Stefan Straszewicz,et al. Über exponierte Punkte abgeschlossener Punktmengen , 1935 .
[170] S. Bochner,et al. Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind , 1933 .
[171] T. H. Hildebrandt. On the moment problem for a finite interval , 1932 .
[172] G. Birkhoff. Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.
[173] S. Banach,et al. Sur une généralisation du problème de la mesure , 1929 .
[174] Bronisław Knaster,et al. Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .
[175] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .
[176] J. Schauder. Bemerkungen zu meiner Arbeit “Zur Theorie stetiger Abbildungen in Funktionalräumen” , 1927 .
[177] S. Banach,et al. Sur la décomposition des ensembles de points en parties respectivement congruentes , 1924 .
[178] L. Brouwer. Über Abbildung von Mannigfaltigkeiten , 1921 .
[179] P. J. Daniell. A General Form of Integral , 1918 .