Infinite dimensional analysis

[1]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[2]  Charalambos D. Aliprantis Problems in equilibrium theory , 1996 .

[3]  Lin Zhou,et al.  The Set of Nash Equilibria of a Supermodular Game Is a Complete Lattice , 1994 .

[4]  I. A. Polyrakis Lattice-Subspaces of C[0,1] and Positive Bases , 1994 .

[5]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[6]  A. Wickstead,et al.  Remarkable Classes of Unital AM-Spaces , 1993 .

[7]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[8]  Bernard R Gelbaum,et al.  Theorems and counterexamples in mathematics , 1993 .

[9]  Maxwell B. Stinchcombe,et al.  Some Measurability Results for Extrema of Random Functions Over Random Sets , 1992 .

[10]  Y. Tong,et al.  Convex Functions, Partial Orderings, and Statistical Applications , 1992 .

[11]  Keith Devlin Sets, functions and logic : an introduction to abstract mathematics / Keith Devlin , 1992 .

[12]  Nicholas C. Yannelis,et al.  Equilibrium Theory in Infinite Dimensional Spaces , 1991 .

[13]  Ralph Henstock,et al.  The General Theory of Integration , 1991 .

[14]  Gerald Beer,et al.  A Polish topology for the closed subsets of a Polish space , 1991 .

[15]  Lloyd S. Shapley,et al.  On Kakutani's fixed point theorem, the K-K-M-S theorem and the core of a balanced game , 1991 .

[16]  M. Frantz On Sierpiński's nonmeasurable set , 1991 .

[17]  A. Rustichini,et al.  Some Unpleasant Objects in a Non-separable Hilbert Space , 1991 .

[18]  Matthew Foreman,et al.  The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set , 1991 .

[19]  Standard and Nonstandard Analysis: Fundamental Theory, Techniques, and Applications , 1990 .

[20]  X. Vives Nash equilibrium with strategic complementarities , 1990 .

[21]  P. Diamond Fixed points of iterates of multivalued mappings , 1989 .

[22]  C. Aliprantis,et al.  Existence and Optimality of Competitive Equilibria , 1989 .

[23]  C. Gilles Charges as equilibrium prices and asset bubbles , 1989 .

[24]  Nancy L. Stokey,et al.  Recursive methods in economic dynamics , 1989 .

[25]  Nicholas C. Yannelis,et al.  Fatou’s lemma in infinite-dimensional spaces , 1988 .

[26]  Kerry Back,et al.  Structure of consumption sets and existence of equilibria in infinite-dimensional spaces☆ , 1988 .

[27]  G. Mehta,et al.  Infinite-dimensional Gale-Nikaido-Debreu theorem and a fixed-point theorem of Tarafdar , 1987 .

[28]  Caratheodory-type selections and random fixed point theorems , 1987 .

[29]  Frank H. Page The existence of optimal contracts in the principal-agent model , 1987 .

[30]  I. M. Gelfand Sur un lemme de la théorie des espaces linéaires , 1987 .

[31]  A. Kechris Classical descriptive set theory , 1987 .

[32]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[33]  R. Phelps,et al.  THE SUPPORT FUNCTIONALS OF A CONVEX SET , 1986 .

[34]  Angus E. Taylor,et al.  Introduction to functional analysis, 2nd ed. , 1986 .

[35]  Y. Kifer Ergodic theory of random transformations , 1986 .

[36]  E. Zeidler,et al.  Fixed-point theorems , 1986 .

[37]  J. E. Jayne THEORY OF CORRESPONDENCES Including Applications to Mathematical Economics (Canadian Mathematical Society Series of Monographs and Advanced Texts) , 1985 .

[38]  Kim C. Border,et al.  Fixed point theorems with applications to economics and game theory: Fixed point theorems for correspondences , 1985 .

[39]  M. Berliant An equilibrium existence result for an economy with land , 1985 .

[40]  D. Pollard Convergence of stochastic processes , 1984 .

[41]  L. Jones Existence of equilibria with infinitely many consumers and infinitely many commodities: A theorem based on models of commodity differentiation , 1983 .

[42]  T. Hill Determining a Fair Border , 1983 .

[43]  T. Ichiishi Game theory for economic analysis , 1983 .

[44]  A. Fryszkowski Continuous selections for a class of non-convex multivalued maps , 1983 .

[45]  A. Zaanen Riesz Spaces, II , 1983 .

[46]  I. Ekeland,et al.  Infinite-Dimensional Optimization And Convexity , 1983 .

[47]  Gregory H. Moore Zermelo's Axiom of Choice: Its Origins, Development, and Influence , 1982 .

[48]  D. Newton AN INTRODUCTION TO ERGODIC THEORY (Graduate Texts in Mathematics, 79) , 1982 .

[49]  John R. Giles,et al.  Convex analysis with application in the differentiation of convex functions , 1982 .

[50]  L. Blume New techniques for the study of stochastic equilibrium processes , 1982 .

[51]  K. Prikry,et al.  Liapounoff’s theorem for nonatomic, finitely-additive, bounded, finite-dimensional, vector-valued measures , 1981 .

[52]  Hans Jarchow,et al.  Locally convex spaces , 1981 .

[53]  Hans Jarchow,et al.  Topological Vector Spaces , 1981 .

[54]  Carl A. Futia,et al.  RATIONAL EXPECTATIONS IN STATIONARY LINEAR MODELS , 1981 .

[55]  W. Stromquist How to Cut a Cake Fairly , 1980 .

[56]  R. Chacon,et al.  Continuity and compactness of measures , 1980 .

[57]  C. Aliprantis,et al.  Minimal topologies and $L_{p}$-spaces , 1980 .

[58]  A. P. Robertson,et al.  Topological Vector Spaces , 1980 .

[59]  h.c. Gottfried Köthe Topological Vector Spaces II , 1979 .

[60]  P. Cousot,et al.  Constructive versions of tarski's fixed point theorems , 1979 .

[61]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[62]  Konrad Jacobs,et al.  Measure and integral , 1978 .

[63]  James Dugundji,et al.  KKM maps and variational inequalities , 1978 .

[64]  T. Kamae,et al.  Stochastic Inequalities on Partially Ordered Spaces , 1977 .

[65]  C. Rogers,et al.  The extremal structure of convex sets , 1977 .

[66]  J. Diestel Remarks on Weak Compactness in L1(μ,X) , 1977, Glasgow Mathematical Journal.

[67]  James W. Roberts A compact convex set with no extreme points , 1977 .

[68]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[69]  E. Tarafdar,et al.  On nonlinear variational inequalities , 1977 .

[70]  K. D. Stroyan,et al.  Introduction to the theory of infinitesimals , 1976 .

[71]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[72]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[73]  M. Schäl On dynamic programming: Compactness of the space of policies , 1975 .

[74]  On the measurability of functions of two variables , 1975 .

[75]  R. G. Vickson,et al.  A Unified Approach to Stochastic Dominance , 1975 .

[76]  Igor Kluvánek,et al.  Vector measures and control systems , 1975 .

[77]  W. Hildenbrand,et al.  Stochastic processes of temporary equilibria , 1974 .

[78]  Mir Srinivasapur Khaleelulla Ordered Topological Vector Spaces and Groups , 1974 .

[79]  A. Mas-Colell Continuous and smooth consumers: Approximation theorems , 1974 .

[80]  H. O. Fattorini,et al.  The time-optimal control problem in Banach spaces , 1974 .

[81]  R. Walker,et al.  The Stone-Cech Compactification , 1974 .

[82]  D. Fremlin,et al.  Topological Riesz Spaces and Measure Theory , 1974 .

[83]  W. Hildenbrand Core and Equilibria of a Large Economy. , 1974 .

[84]  D. Ornstein Ergodic theory, randomness, and dynamical systems , 1974 .

[85]  D. Tacon Weak compactness in normed linear spaces , 1972, Journal of the Australian Mathematical Society.

[86]  T. Bewley Existence of equilibria in economies with infinitely many commodities , 1972 .

[87]  K. Vind,et al.  A THIRD REMARK ON THE CORE OF AN ATOMLESS ECONOMY , 1972 .

[88]  C. Dellacherie Capacités et processus stochastiques , 1972 .

[89]  On set correspondences into uniformly convex Banach spaces , 1972 .

[90]  Zbigniew Semadeni,et al.  Banach spaces of continuous functions , 1971 .

[91]  R. E. Smithson,et al.  Fixed points of order preserving multifunctions , 1971 .

[92]  A. Robertson,et al.  TOPOLOGICAL VECTOR SPACES AND DISTRIBUTIONS VOL. 1 , 1970 .

[93]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[94]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[95]  G. Jameson Ordered Linear Spaces , 1970 .

[96]  Robert M. Blumenthal,et al.  On continuous collections of measures , 1970 .

[97]  S. Nadler Multi-valued contraction mappings. , 1969 .

[98]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[99]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[100]  E. Wattel,et al.  A general fixed point theorem , 1969 .

[101]  C. Ionescu Tulcea,et al.  Topics in the Theory of Lifting , 1969 .

[102]  D. Daley Stochastically monotone Markov Chains , 1968 .

[103]  M. E. Noble Elements de Mathematique. Livre VI, Integration, Chaps 1,..., 4 , 1968, The Mathematical Gazette.

[104]  R. Sine Geometric theory of a single Markov operator , 1968 .

[105]  Constantin Carathéodory,et al.  Vorlesungen über reelle Funktionen , 1968 .

[106]  George M. Bergman,et al.  A FIXED-POINT THEOREM FOR INWARD AND OUTWARD MAPS , 1968 .

[107]  M. Shubik,et al.  Convex structures and economic theory , 1968 .

[108]  E. Denardo CONTRACTION MAPPINGS IN THE THEORY UNDERLYING DYNAMIC PROGRAMMING , 1967 .

[109]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[110]  C. Castaing Sur les multi-applications mesurables , 1967 .

[111]  W. Rudin Real and complex analysis , 1968 .

[112]  P. J. Cohen Set Theory and the Continuum Hypothesis , 1966 .

[113]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[114]  N. Levinson,et al.  Minimax, Liapunov and “bang-bang” , 1966 .

[115]  C. Olech,et al.  Extremal solutions of a control system , 1966 .

[116]  R. Dudley Convergence of Baire measures , 1966 .

[117]  F. Browder Nonlinear monotone operators and convex sets in Banach spaces , 1965 .

[118]  E. Effros Convergence of closed subsets in a topological space , 1965 .

[119]  R. Rockafellar,et al.  On the subdifferentiability of convex functions , 1965 .

[120]  Leonard J. Savage,et al.  How to Gamble If You Must: Inequalities for Stochastic Processes , 1965 .

[121]  L. Nachbin Topology and order , 1965 .

[122]  J. Neveu,et al.  Mathematical foundations of the calculus of probability , 1965 .

[123]  T. Husain The Open Mapping and Closed Graph Theorems in Topological Vector Spaces , 1965 .

[124]  J. D. Halperin,et al.  The independence of the axiom of choice from the Boolean prime ideal theorem , 1964 .

[125]  H. Halkin A Generalization of LaSalle’s “Bang-Bang” Principle , 1964 .

[126]  V. Strassen,et al.  Me\fehler und Information , 1964 .

[127]  R. C. James Weakly compact sets , 1964 .

[128]  Kennan T. Smith,et al.  Linear Topological Spaces , 1966 .

[129]  L. Neustadt The existence of optimal controls in the absence of convexity conditions , 1963 .

[130]  C. D. Olds Continued Fractions: CONTINUED FRACTIONS , 1963 .

[131]  W. A. J. Luxemburg,et al.  Two applications of the method of construction by ultrapowers to analysis , 1962 .

[132]  J. M. G. Fell,et al.  A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space , 1962 .

[133]  A. F. Filippov On Certain Questions in the Theory of Optimal Control , 1962 .

[134]  R. Aumann Borel structures for function spaces , 1961 .

[135]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[136]  Steven Vajda,et al.  The Theory of Linear Economic Models , 1960 .

[137]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[138]  K. Leeuw,et al.  The representations of linear functionals by measures on sets of extreme points , 1959 .

[139]  M. Sion On general minimax theorems , 1958 .

[140]  Alan J. Hoffman,et al.  Systems of inequalities involving convex functions , 1957 .

[141]  A. Davis,et al.  A characterization of complete lattices , 1955 .

[142]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[143]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[144]  G. Debreu VALUATION EQUILIBRIUM AND PARETO OPTIMUM. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[145]  D. Blackwell Equivalent Comparisons of Experiments , 1953 .

[146]  R. Bartle,et al.  Mappings between function spaces , 1952 .

[147]  K. Fan Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[148]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[149]  K. Yosida,et al.  Finitely additive measures , 1952 .

[150]  I. Glicksberg A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .

[151]  E. Michael Topologies on spaces of subsets , 1951 .

[152]  J. L. Kelley,et al.  The Tychonoff product theorem implies the axiom of choice , 1950 .

[153]  H. F. Bohnenblust,et al.  On a Theorem of Ville , 1949 .

[154]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[155]  P R Halmos On A Theorem of Dieudonné. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[156]  Jr. V. L. Klee The support property of a convex set in a linear normed space , 1948 .

[157]  Paul R. Halmos,et al.  The range of a vector measure , 1948 .

[158]  R. Arens Duality in linear spaces , 1947 .

[159]  W. F. Eberlein Weak Compactness in Banach Spaces: I. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[160]  G. Mackey On Convex Topological Linear Spaces. , 1943, Proceedings of the National Academy of Sciences of the United States of America.

[161]  Some notes on the separation of convex sets , 1942 .

[162]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .

[163]  M. Krein,et al.  On Regularly Convex Sets in the Space Conjugate to a Banach Space , 1940 .

[164]  M. Kreĭn,et al.  On extreme points of regular convex sets , 1940 .

[165]  Motokiti Kondô Sur l'uniformisation des complémentaires analytiques et les ensembles projectifs de la seconde classe , 1939 .

[166]  B. Pettis On integration in vector spaces , 1938 .

[167]  E. T. Bell,et al.  Men of Mathematics , 1937, Nature.

[168]  M. Zorn A remark on method in transfinite algebra , 1935 .

[169]  Stefan Straszewicz,et al.  Über exponierte Punkte abgeschlossener Punktmengen , 1935 .

[170]  S. Bochner,et al.  Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind , 1933 .

[171]  T. H. Hildebrandt On the moment problem for a finite interval , 1932 .

[172]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[173]  S. Banach,et al.  Sur une généralisation du problème de la mesure , 1929 .

[174]  Bronisław Knaster,et al.  Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .

[175]  E. Sperner Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .

[176]  J. Schauder Bemerkungen zu meiner Arbeit “Zur Theorie stetiger Abbildungen in Funktionalräumen” , 1927 .

[177]  S. Banach,et al.  Sur la décomposition des ensembles de points en parties respectivement congruentes , 1924 .

[178]  L. Brouwer Über Abbildung von Mannigfaltigkeiten , 1921 .

[179]  P. J. Daniell A General Form of Integral , 1918 .