Strategies for constrained optimisation

The latest 6-man chess endgame results confirm that there are many deep forced mates beyond the 50-move rule. Players with potential wins near this limit naturally want to avoid a claim for a draw: optimal play to current metrics does not guarantee feasible wins or maximise the chances of winning against fallible opposition. A new metric and further strategies are defined which support players’ aspirations and improve their prospects of securing wins in the context of a k-move rule.

[1]  Guy Haworth,et al.  Space-efficient indexing of endgame tables for chess , 2001 .

[2]  L. Stiller Multilinear Algebra and Chess Endgames , 1996 .

[3]  H. Jaap van den Herik,et al.  Back to Fifty , 1993, J. Int. Comput. Games Assoc..

[4]  John Nunn Secrets of Pawnless Endings , 1994 .

[5]  Lewis Stiller Some Results from a Massively Parallel Retrograde Analysis , 1991, J. Int. Comput. Games Assoc..

[6]  Guy Haworth,et al.  KQQKQQ and the Kasparov-World Game , 1999, J. Int. Comput. Games Assoc..

[7]  H. Jaap van den Herik,et al.  A Six-Men-Endgame Database: KRP(a2)KbBP(a3) , 1987, J. Int. Comput. Games Assoc..

[8]  Peter Karrer KQQKQP and KQPKQP≈ , 2000, J. Int. Comput. Games Assoc..

[9]  A. J. Roycroft Expert against Oracle , 1988 .

[10]  Lewis Stiller,et al.  Parallel Analysis of Certain Endgames , 1989, J. Int. Comput. Games Assoc..

[11]  David N. L. Levy,et al.  First Amongst Equals , 1991, J. Int. Comput. Games Assoc..

[12]  Jürg Nievergelt,et al.  Exhaustive and Heuristic Retrograde Analysis of the KPPKP Endgame , 1999, J. Int. Comput. Games Assoc..

[13]  Monty Newborn,et al.  How Computers Play Chess , 1990, J. Int. Comput. Games Assoc..

[14]  C. Abbot A PROPHECY FULFILLED. , 1941, Science.

[15]  Lewis Stiller,et al.  Kqnkrr , 1992, J. Int. Comput. Games Assoc..

[16]  Ken Thompson,et al.  Retrograde Analysis of Certain Endgames , 1986, J. Int. Comput. Games Assoc..

[17]  Ken Thompson,et al.  6-Piece Endgames , 1996, J. Int. Comput. Games Assoc..

[18]  Guy Haworth Depth by the Rule , 2001, J. Int. Comput. Games Assoc..

[19]  Edmar Mednis The 50-Move Rule Adapted (1) , 1989, J. Int. Comput. Games Assoc..

[20]  H. J. J. Nefkens How to Win with a Knight Ahead , 1991, J. Int. Comput. Games Assoc..

[21]  Lewis Stiller Karpov and Kasparov: The End is Perfection , 1991, J. Int. Comput. Games Assoc..

[22]  John Roycroft A Proposed Revision of the '50-Move Rule' , 1984, J. Int. Comput. Games Assoc..

[23]  B. M. Kazic The 50-Move Rule Adapted (2) , 1989, J. Int. Comput. Games Assoc..

[24]  H. Jaap van den Herik,et al.  Perfect Knowledge Revisited , 1990, Artif. Intell..