Fusing ASTER, ALI and Hyperion data for enhanced mineral mapping

This investigation fused Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI) and Hyperion data for detecting hydrothermal alteration minerals associated with porphyry copper mineralisation and related host-rock lithology. The distribution of iron oxide/hydroxide minerals, vegetation and clay minerals was identified based on principal component analysis, using the distinctive bands of ASTER and ALI at a regional scale. The analysis also showed that by fusing these different data sources, the discrimination of quartz-rich igneous rocks from the magmatic bedrock and the boundary between igneous and sedimentary rocks using ASTER thermal infrared bands could be made. An image map of spectrally predominant mineral assemblages in the hydrothermal alteration zones could be produced using the shortwave infrared bands of Hyperion data at a district scale. Phyllic, advanced argillic and propylitic alteration zones associated with porphyry copper mineralisation were discriminated based on the identified alteration minerals such as sericite, kaolinite, illite, alunite, chlorite, epidote and calcite. Results have proven to be effective, and in accordance with the results of field investigations. It is concluded that the methods of image and data fusion of spectral information derived from ASTER, ALI and Hyperion data can produce comprehensive and accurate information for copper resource investigations.

[1]  Mazlan Hashim,et al.  Identifying areas of high economic-potential copper mineralization using aster data in the urumieh-dokhtar volcanic belt, Iran , 2012 .

[2]  Simon J. Hook,et al.  Simulated Aster data for geologic studies , 1995, IEEE Trans. Geosci. Remote. Sens..

[3]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[4]  Ashley William Gunter,et al.  Getting it for free: Using Google earth™ and IL WIS to map squatter settlements in Johannesburg , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[5]  M. H. Tangestani,et al.  Porphyry copper alteration mapping at the Meiduk area, Iran , 2002 .

[6]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[7]  Y. Ninomiya,et al.  Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data , 2005 .

[8]  John W. Salisbury,et al.  Mid-Infrared Spectral Behavior of Metamorphic Rocks. , 1976 .

[9]  Gary Higgs,et al.  Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar , 2003 .

[10]  Michael S. Ramsey,et al.  Radiometric normalization and image mosaic generation of ASTER thermal infrared data: An application to extensive sand sheets and dune fields , 2008 .

[11]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[12]  Kurtis J. Thome,et al.  Atmospheric correction of ASTER , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  R. Sillitoe Porphyry Copper Systems , 2010 .

[14]  T. Kusky,et al.  Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt , 2012 .

[15]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  K. Kundig,et al.  Copper : its trade, manufacture, use, and environmental status , 1999 .

[17]  M. Hashim,et al.  The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits , 2012 .

[18]  Mazlan Hashim,et al.  Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran , 2011 .

[19]  R. Modarres,et al.  Rainfall trends in arid and semi-arid regions of Iran , 2007 .

[20]  B. Zoheir,et al.  Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt , 2012 .

[21]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  E. Bedini Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data , 2011 .

[23]  Philippa J. Mason,et al.  Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China , 2011 .

[24]  Yoshiki Ninomiya,et al.  Advanced remote lithologic mapping in ophiolite zone with ASTER multispectral thermal infrared data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[25]  M. Hashim,et al.  Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran , 2011 .

[26]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[27]  R. M. Prol-Ledesma,et al.  Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico , 1998 .

[28]  Robert J. Stern,et al.  Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho Alteration Zone in northern Eritrea , 2000 .

[29]  J. K. Crowley,et al.  Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions , 2005 .

[30]  S. Gabr,et al.  Detecting areas of high-potential gold mineralization using ASTER data , 2010 .

[31]  B. Shafiei Lead isotope signatures of the igneous rocks and porphyry copper deposits from the Kerman Cenozoic magmatic arc (SE Iran), and their magmatic-metallogenetic implications , 2010 .

[32]  W. P. Loughlin,et al.  PRINCIPAL COMPONENT ANALYSIS FOR ALTERATION MAPPING , 1991 .

[33]  A. Crósta,et al.  Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis , 2003 .

[34]  Eyal Ben-Dor,et al.  Mapping of hydrothermally altered rocks by the EO‐1 Hyperion sensor, Northern Danakil Depression, Eritrea , 2008 .

[35]  J. W. Boardman,et al.  Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[36]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[37]  L. Rowan,et al.  Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms , 2006 .

[38]  Robert J. Stern,et al.  Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies , 2003 .

[39]  Yoshiki Ninomiya,et al.  A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[40]  D. Aydal,et al.  Application of the Crosta technique for alteration mapping of granitoidic rocks using ETM+ data: case study from eastern Tauride belt (SE Turkey) , 2007 .

[41]  Akira Iwasaki,et al.  Validation of a crosstalk correction algorithm for ASTER/SWIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[42]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[43]  Timothy M. Kusky,et al.  Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach , 2002 .

[44]  B. Rockwell,et al.  Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas , 2008 .

[45]  Thomas Cudahy,et al.  Characterization of the hydrothermal systems associated with Archean VMS-mineralization at Panorama, Western Australia, using hyperspectral, geochemical and geothermometric data , 2012 .

[46]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[47]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[48]  F. Meer,et al.  Geochemical indicators of gold-rich zones in the La Josefina epithermal deposit, Deseado Massif, Argentina , 2012 .

[49]  M. H. Tangestani,et al.  Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran , 2008 .

[50]  Jixian Zhang Multi-source remote sensing data fusion: status and trends , 2010 .

[51]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[52]  Mazlan Hashim,et al.  Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran , 2011 .