The Voronoi tessellation generated from eigenvalues of complex random matrices

The Voronoi froth generated from eigenvalues of asymmetric complex random matrices is studied by numerical simulation. It is more regular than the random Voronoi froth IRVF) generated from a Poisson process. The existence of a unique tessellation, called here random matrix Voronoi froth (RMVF), follows from the universality of the distribution of eigenvalues, which is also briefly commented on. The geometrical and topological properties of the RMVF have been characterised. An empirical and accurate distribution function is also proposed for the cell side length of a RVF. Deviations from the Aboav- Weaire law are discussed. Their magnitude may be interpreted as a measure ofthe departure from an equilibrium structure in the frame of the statistical crystallography theory of Rivier.

[1]  N. Rivier,et al.  Statistical crystallography Structure of random cellular networks , 1985 .

[2]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[3]  B. Boots,et al.  Edge length properties of random Voronoi polygons , 1987 .

[4]  Denis Weaire,et al.  Some remarks on the arrangement of grains in a polycrystal , 1974 .

[5]  O. Richmond,et al.  Use of the Dirichlet tessellation for characterizing and modeling nonregular dispersions of second-phase particles , 1983 .

[6]  Ian K. Crain,et al.  The Monte-Carlo generation of random polygons , 1978 .

[7]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[8]  Hiroshi Imai,et al.  Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..

[9]  D. A Aboav,et al.  The arrangement of grains in a polycrystal , 1970 .

[10]  A. Mocellin,et al.  Grain coordination in plane sections of polycrystals , 1979 .

[11]  Tohru Ogawa,et al.  A new algorithm for three-dimensional voronoi tessellation , 1983 .

[12]  D. A. Aboav,et al.  The arrangement of cells in a net , 1980 .

[13]  Nicolas Rivier,et al.  On the correlation between sizes and shapes of cells in epithelial mosaics , 1982 .

[14]  D. Weaire,et al.  Soap, cells and statistics – random patterns in two dimensions , 1984 .

[15]  J. Verbaarschot,et al.  Spectral statistics of scale invariant systems , 1986 .

[16]  K. Kawasaki Aspects of late-stage dynamics of ordering processes , 1990 .

[17]  ORDER AND DISORDER IN TWO-DIMENSIONAL RANDOM NETWORKS , 1983 .

[18]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[19]  M. Fortes,et al.  The arrangement of cells in 3- and 4-regular planar networks formed by random straight lines , 1989 .

[20]  J. Iglesias,et al.  Equilibrium states of 2D cellular structures , 1989 .

[21]  Haake,et al.  Universality of cubic-level repulsion for dissipative quantum chaos. , 1989, Physical review letters.

[22]  J. Wejchert,et al.  On the distribution of cell areas in a Voronoi network , 1986 .

[23]  B. N. Boots,et al.  The spatial arrangement of random Voronoi polygons , 1983 .

[24]  F. T. Lewis,et al.  The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis , 1928 .

[25]  S. C. Black,et al.  Gaussian random number generators on a CYBER-205 , 1989 .

[26]  R. E. Miles,et al.  Monte carlo estimates of the distributions of the random polygons of the voronoi tessellation with respect to a poisson process , 1980 .

[27]  H. Honda Description of cellular patterns by Dirichlet domains: the two-dimensional case. , 1978, Journal of theoretical biology.

[28]  N. Rivier On the structure of random tissues or froths, and their evolution , 1983 .

[29]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[30]  Wertheim,et al.  Monte Carlo calculation of the size distribution of supported clusters. , 1989, Physical review. B, Condensed matter.

[31]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[32]  Sommers,et al.  Quantum distinction of regular and chaotic dissipative motion. , 1988, Physical review letters.

[33]  Sherrington,et al.  Local magnetic field distributions. III. Disordered systems. , 1986, Physical review. B, Condensed matter.

[34]  C. Itzykson,et al.  Random geometry and the statistics of two-dimensional cells , 1984 .

[35]  J. Iglesias,et al.  Towards statistical mechanics of a 2D random cellular structure , 1988 .

[36]  Norman H. Christ,et al.  Random Lattice Field Theory: General Formulation , 1982 .

[37]  T. Seligman,et al.  Quantum Chaos and Statistical Nuclear Physics , 1986 .