First-Order Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

We investigate ontology-based data access to temporal data. We consider temporal ontologies given in linear temporal logic LTL interpreted over discrete time (Z, 1, or FO(RPR), which extends FO(<) with relational primitive recursion. In terms of circuit complexity, FO(<,E)- and FO(RPR)-rewritability guarantee OMQ answering in uniform AC0 and, respectively, NC1. We obtain similar hierarchies for more expressive types of queries: positive LTL-formulas, monotone MFO(<)- and arbitrary MFO(<)-formulas. Our results are directly applicable if the temporal data to be accessed is one-dimensional; moreover, they lay foundations for investigating ontology-based access using combinations of temporal and description logics over two-dimensional temporal data.

[1]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[2]  Magdalena Ortiz,et al.  Ontology-Mediated Query Answering with Data-Tractable Description Logics , 2015, Reasoning Web.

[3]  Albrecht Schmiedel,et al.  Temporal Terminological Logic , 1990, AAAI.

[4]  Jean-François Baget,et al.  On rules with existential variables: Walking the decidability line , 2011, Artif. Intell..

[5]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[6]  Thomas Eiter,et al.  LARS: A Logic-Based Framework for Analyzing Reasoning over Streams , 2015, AAAI.

[7]  Stefan Borgwardt,et al.  Temporalizing rewritable query languages over knowledge bases , 2015, J. Web Semant..

[8]  Ralf Küsters,et al.  Extensions to Description Logics , 2003, Description Logic Handbook.

[9]  Enrico Franconi,et al.  Temporal Description Logics , 2005, Handbook of Temporal Reasoning in Artificial Intelligence.

[10]  Anni-Yasmin Turhan,et al.  Ontology-mediated query answering over temporal and inconsistent data , 2019, Semantic Web.

[11]  Michael Zakharyaschev,et al.  Querying Log Data with Metric Temporal Logic , 2017, J. Artif. Intell. Res..

[12]  Michael Zakharyaschev,et al.  Ontology-Based Data Access: Ontop of Databases , 2013, SEMWEB.

[13]  Carsten Lutz,et al.  The Data Complexity of Description Logic Ontologies , 2016, Log. Methods Comput. Sci..

[14]  Patrick Koopmann,et al.  Ontology-Based Query Answering for Probabilistic Temporal Data (Extended Version) , 2018 .

[15]  Carsten Lutz,et al.  Ontology-Mediated Querying with the Description Logic EL: Trichotomy and Linear Datalog Rewritability , 2017, IJCAI.

[16]  Diego Calvanese,et al.  EQL-Lite: Effective First-Order Query Processing in Description Logics , 2007, IJCAI.

[17]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[18]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[19]  Anthony Widjaja To Unary finite automata vs. arithmetic progressions , 2008 .

[20]  Franz Baader,et al.  Temporalizing Ontology-Based Data Access , 2013, CADE.

[21]  Jan Chomicki,et al.  Datalog with Integer Periodicity Constraints , 1994, J. Log. Program..

[22]  D. Gabbay,et al.  Handbook of Philosophical Logic, Volume II. Extensions of Classical Logic , 1986 .

[23]  Andrea Calì,et al.  A general Datalog-based framework for tractable query answering over ontologies , 2012, J. Web Semant..

[24]  Michael Fisher,et al.  A Normal Form for Temporal Logics and its Applications in Theorem-Proving and Execution , 1997, J. Log. Comput..

[25]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.

[26]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[27]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[28]  Diego Calvanese,et al.  Ontology-based data integration in EPNet: Production and distribution of food during the Roman Empire , 2016, Eng. Appl. Artif. Intell..

[29]  Stanislav Kikot,et al.  On the Parametrised Complexity of Tree-Shaped Ontology-Mediated Queries in OWL 2 QL , 2017, Description Logics.

[30]  Andrea Calì,et al.  A general datalog-based framework for tractable query answering over ontologies , 2009, SEBD.

[31]  A BarringtonDavid Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1989 .

[32]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[33]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[34]  Luca Spalazzi,et al.  Reasoning with Temporal ABoxes: Combining DL-Lite_core with CTL , 2013, Description Logics.

[35]  Diego Calvanese,et al.  The DL-Lite Family and Relations , 2009, J. Artif. Intell. Res..

[36]  Carsten Lutz,et al.  Dichotomies in Ontology-Mediated Querying with the Guarded Fragment , 2017, PODS.

[37]  Franz Baader,et al.  Metric Temporal Description Logics with Interval-Rigid Names , 2017, Description Logics.

[38]  Thomas Schwentick,et al.  Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.

[39]  Arild Waaler,et al.  Ontology-Based Data Access to Slegge , 2017, International Semantic Web Conference.

[40]  J. Guéron,et al.  Time and Modality , 2008 .

[41]  Carsten Lutz,et al.  Ontology-Based Data Access , 2014, ACM Trans. Database Syst..

[42]  Howard Barringer,et al.  Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.

[43]  Franz Baader,et al.  Metric Temporal Description Logics with Interval-Rigid Names , 2020, ACM Trans. Comput. Log..

[44]  Jean Christoph Jung,et al.  Temporalized EL Ontologies for Accessing Temporal Data: Complexity of Atomic Queries , 2016, IJCAI.

[45]  Carsten Lutz,et al.  Temporal Description Logics: A Survey , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[46]  Andrew Jobbings Parity , 2021, Encyclopedia of Evolutionary Psychological Science.

[47]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[48]  Howard Straubing,et al.  Characterizations of regular languages in low level complexity classes , 2001, Bull. EATCS.

[49]  Jean Christoph Jung,et al.  Lightweight Description Logics and Branching Time: A Troublesome Marriage , 2014, KR.

[50]  Alessandro Artale,et al.  The Complexity of Clausal Fragments of LTL , 2013, LPAR.

[51]  Jean Christoph Jung,et al.  Lightweight Temporal Description Logics with Rigid Roles and Restricted TBoxes , 2015, IJCAI.

[52]  Egor V. Kostylev,et al.  Queries with negation and inequalities over lightweight ontologies , 2015, J. Web Semant..

[53]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[54]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[55]  Klaus Schild,et al.  Combining Terminological Logics with Tense Logic , 1993, EPIA.

[56]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[57]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[58]  Stanislav Kikot,et al.  The Complexity of Ontology-Based Data Access with OWL 2 QL and Bounded Treewidth Queries , 2017, PODS.

[59]  Alessandro Artale,et al.  A Cookbook for Temporal Conceptual Data Modelling with Description Logics , 2012, TOCL.

[60]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[61]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[62]  Howard Straubing,et al.  An Introduction to Finite Automata and their Connection to Logic , 2010, Modern Applications of Automata Theory.

[63]  A. Nakamura,et al.  On the size of refutation Kripke models for some linear modal and tense logics , 1980 .

[64]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[65]  Clare Dixon,et al.  Clausal temporal resolution , 1999, TOCL.

[66]  Diego Calvanese,et al.  The MASTRO system for ontology-based data access , 2011, Semantic Web.

[67]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic EL , 2015, IJCAI.

[68]  Claude Laflamme,et al.  An Algebra and a Logic for NC¹ , 1990, Inf. Comput..

[69]  Peter Z. Revesz,et al.  A Closed-Form Evaluation for Datalog Queries with Integer (Gap)-Order Constraints , 1993, Theor. Comput. Sci..

[70]  Floris Geerts,et al.  Constraint Query Languages , 2008, Encyclopedia of GIS.

[71]  Diego Calvanese,et al.  Ontology-Based Data Access: A Survey , 2018, IJCAI.

[72]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[73]  Daniel P. Miranker,et al.  A Pay-As-You-Go Methodology for Ontology-Based Data Access , 2017, IEEE Internet Computing.

[74]  Stanislav Kikot,et al.  Ontology-Mediated Queries , 2016, J. ACM.

[75]  Stefan Borgwardt,et al.  Temporal Query Answering in DL-Lite with Negation , 2015, GCAI.

[76]  Walter Forkel,et al.  Finding New Diamonds: Temporal Minimal-World Query Answering over Sparse ABoxes (Extended Abstract) , 2020, Description Logics.

[77]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[78]  B. A. Trakhtenbrot,et al.  Finite Automata and the Logic of Single-Place Predicates , 1962 .

[79]  Riccardo Rosati,et al.  The Limits of Querying Ontologies , 2007, ICDT.

[80]  Franz Baader,et al.  Temporal Conjunctive Queries in Expressive Description Logics with Transitive Roles , 2015, Australasian Conference on Artificial Intelligence.

[81]  Franz Baader,et al.  Temporal query entailment in the Description Logic SHQ , 2015, J. Web Semant..

[82]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic DL-Lite , 2013, FroCos.

[83]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[84]  I-Peng Lin,et al.  The Computational Complexity of the Satisfiability of Modal Horn Clauses for Modal Propositional Logics , 1994, Theor. Comput. Sci..

[85]  Jean Christoph Jung,et al.  On Metric Temporal Description Logics , 2016, ECAI.

[86]  Diego Calvanese,et al.  Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases , 2019, TIME.

[87]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[88]  Samantha Bail,et al.  FishMark: A Linked Data Application Benchmark , 2012, SSWS+HPCSW@ISWC.

[89]  Moshe Y. Vardi From Church and Prior to PSL , 2008, 25 Years of Model Checking.

[90]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[91]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[92]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[93]  Evgeny Kharlamov,et al.  Semantically-enhanced rule-based diagnostics for industrial Internet of Things: The SDRL language and case study for Siemens trains and turbines , 2019, J. Web Semant..

[94]  Maurizio Lenzerini,et al.  Developing Ontology-based Data Management for the Italian Public Debt , 2014, SEBD.

[95]  Alexander Moshe Rabinovich A Proof of Kamp's theorem , 2014, Log. Methods Comput. Sci..

[96]  Peter Haase,et al.  Optique: Zooming in on Big Data , 2015, Computer.

[97]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.