Coordinated inductive learning using argumentation-based communication

This paper focuses on coordinated inductive learning, concerning how agents with inductive learning capabilities can coordinate their learnt hypotheses with other agents. Coordination in this context means that the hypothesis learnt by one agent is consistent with the data known to the other agents. In order to address this problem, we present A-MAIL, an argumentation approach for agents to argue about hypotheses learnt by induction. A-MAIL integrates, in a single framework, the capabilities of learning from experience, communication, hypothesis revision and argumentation. Therefore, the A-MAIL approach is one step further in achieving autonomous agents with learning capabilities which can use, communicate and reason about the knowledge they learn from examples.

[1]  Luís Torgo,et al.  Knowledge Acquisition via Knowledge Integration , 1990 .

[2]  Vítor Santos Costa,et al.  Inductive Logic Programming , 2013, Lecture Notes in Computer Science.

[3]  Barry Smyth,et al.  Collaborative Case-Based Reasoning: Applications in Personalised Route Planning , 2001, ICCBR.

[4]  Santiago Ontañón,et al.  Learning collaboration strategies for committees of learning agents , 2006, Autonomous Agents and Multi-Agent Systems.

[5]  W. R. Sharp,et al.  A Steering and Visualization Toolkit for Distributed Applications , 2006, PDPTA.

[6]  Anthony Hunter,et al.  A logic-based theory of deductive arguments , 2001, Artif. Intell..

[7]  H. Hirsh Incremental Version-Space Merging: A General Framework for Concept Learning , 1990 .

[8]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[9]  David B. Leake,et al.  Goal-driven learning , 1995 .

[10]  Shan-Hwei Nienhuys-Cheng,et al.  Existence and Nonexistence of Complete Refinement Operators , 1994, ECML.

[11]  Michael Wooldridge,et al.  Inconsistency tolerance in weighted argument systems , 2009, AAMAS.

[12]  David B. Leake,et al.  When Two Case Bases Are Better than One: Exploiting Multiple Case Bases , 2001, ICCBR.

[13]  Wei-Min Shen,et al.  Collaborative multiagent learning for classification tasks , 2001, AGENTS '01.

[14]  Bob Carpenter Logic of Typed Feature Structures, The (Cambridge Tracts in Theoretical Computer Science) , 2005 .

[15]  Nicholas R. Jennings,et al.  Dialogue games that agents play within a society , 2009, Artif. Intell..

[16]  David B. Leake,et al.  Managing Multiple Case Bases: Dimensions and Issues , 2002, FLAIRS.

[17]  Manuela M. Veloso,et al.  Simultaneous Adversarial Multi-Robot Learning , 2003, IJCAI.

[18]  Ivan Bratko,et al.  Argument based machine learning , 2006, Artif. Intell..

[19]  Brian R. Gaines,et al.  Current Trends in Knowledge Acquisition , 1990 .

[20]  Gerhard Weiß Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments , 1997, Lecture Notes in Computer Science.

[21]  Gabriele Kern-Isberner,et al.  A Distributed Argumentation Framework using Defeasible Logic Programming , 2008, COMMA.

[22]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[23]  Sati S. Sian,et al.  Extending Learning to Multiple Agents: Issues and a Model for Multi-Agent Machine Learning (MA-ML) , 1991, EWSL.

[24]  Hinrich Schütze,et al.  Introduction to Information Retrieval: Probabilistic information retrieval , 2008 .

[25]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[26]  Yves Kodratoff,et al.  Machine Learning — EWSL-91 , 1991, Lecture Notes in Computer Science.

[27]  Ryszard S. Michalski,et al.  Inductive inference of VL decision rules , 1977, SGAR.

[28]  Enric Plaza,et al.  Cooperative Case-Based Reasoning , 1996, ECAI Workshop LDAIS / ICMAS Workshop LIOME.

[29]  Victor R. Lesser,et al.  Retrieval and Reasoning in Distributed Case Bases1 , 1996, J. Vis. Commun. Image Represent..

[30]  Guillermo Ricardo Simari,et al.  Dialectical Abstract Argumentation: A Characterization of the Marking Criterion , 2009, IJCAI.

[31]  Peter Edwards,et al.  Distributed Learning: An Agent-Based Approach to Data-Mining , 1995 .

[32]  Mathieu Serrurier,et al.  Arguing and explaining classifications , 2007, AAMAS '07.

[33]  Michael L. Littman,et al.  Markov Games as a Framework for Multi-Agent Reinforcement Learning , 1994, ICML.

[34]  Henry Prakken,et al.  Coherence and Flexibility in Dialogue Games for Argumentation , 2005, J. Log. Comput..

[35]  Victor Lesser,et al.  On retrieval and reasoning in distributed case bases , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[36]  François Charpillet,et al.  Stigmergy in multiagent reinforcement learning , 2004, Fourth International Conference on Hybrid Intelligent Systems (HIS'04).

[37]  Santiago Ontañón,et al.  Concept Convergence in Empirical Domains , 2010, Discovery Science.

[38]  Eva Armengol,et al.  Bottom-Up Induction of Feature Terms , 2000, Machine Learning.

[39]  Dino Pedreschi,et al.  Machine Learning: ECML 2004 , 2004, Lecture Notes in Computer Science.

[40]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[41]  Manuela M. Veloso,et al.  Towards collaborative and adversarial learning: a case study in robotic soccer , 1998, Int. J. Hum. Comput. Stud..

[42]  Amal El Fallah Seghrouchni,et al.  SMILE: Sound Multi-agent Incremental LEarning , 2007, AAMAS '07.

[43]  Bob Carpenter,et al.  The logic of typed feature structures , 1992 .

[44]  Trevor J. M. Bench-Capon,et al.  PADUA: a protocol for argumentation dialogue using association rules , 2009, Artificial Intelligence and Law.

[45]  Andreas Podelski,et al.  Towards a Meaning of LIFE , 1991, J. Log. Program..

[46]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[47]  Manuela M. Veloso,et al.  Multiagent learning using a variable learning rate , 2002, Artif. Intell..

[48]  Foster J. Provost,et al.  Scaling Up: Distributed Machine Learning with Cooperation , 1996, AAAI/IAAI, Vol. 1.

[49]  Santiago Ontañón,et al.  A defeasible reasoning model of inductive concept learning from examples and communication , 2012, Artif. Intell..

[50]  Santiago Ontañón,et al.  Similarity measures over refinement graphs , 2012, Machine Learning.

[51]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[52]  Sébastien Konieczny,et al.  On the merging of Dung's argumentation systems , 2007, Artif. Intell..

[53]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[54]  Santiago Ontañón,et al.  Towards Argumentation-based Multiagent Induction , 2010, ECAI.

[55]  Stephen Muggleton,et al.  To the international computing community: A new East-West challenge , 1994 .

[56]  Guillermo Ricardo Simari,et al.  Computing Dialectical Trees Efficiently in Possibilistic Defeasible Logic Programming , 2005, LPNMR.

[57]  Rich Caruana,et al.  Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.

[58]  Santiago Ontañón,et al.  Justification-Based Selection of Training Examples for Case Base Reduction , 2004, ECML.

[59]  Barry Smyth,et al.  Remembering To Forget: A Competence-Preserving Case Deletion Policy for Case-Based Reasoning Systems , 1995, IJCAI.

[60]  Santiago Ontañón,et al.  Learning and joint deliberation through argumentation in multiagent systems , 2007, AAMAS '07.

[61]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[62]  Ivan Bratko,et al.  Argument-Based Machine Learning , 2006, ISMIS.

[63]  Amal El Fallah Seghrouchni,et al.  Learning better together , 2010, ECAI.

[64]  Manuela M. Veloso,et al.  Multiagent Systems: A Survey from a Machine Learning Perspective , 2000, Auton. Robots.

[65]  Michael P. Wellman,et al.  Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm , 1998, ICML.