KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering
暂无分享,去创建一个
Karl Glazebrook | Konrad Kuijken | Peter Schneider | Shahab Joudaki | Christian Wolf | Hendrik Hildebrandt | Gregory B. Poole | Chris Lidman | Ami Choi | Chris Blake | Dominik Klaes | David Parkinson | Alexander Mead | Catherine Heymans | Thomas Erben | Henk Hoekstra | Massimo Viola | Alexandra Amon | H. Hoekstra | L. Miller | C. Heymans | P. Schneider | K. Kuijken | D. Parkinson | H. Hildebrandt | C. Wolf | C. Blake | K. Glazebrook | C. Lidman | T. Erben | M. Viola | J. Harnois-Déraps | D. Klaes | A. Choi | G. Poole | M. Asgari | S. Joudaki | A. Mead | Marika Asgari | Lance Miller | A. Amon | Andrew Johnson | Andrew Johnson | Joachim Harnois-Deraps | P. Schneider
[1] P. Schneider,et al. KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.
[2] Hal Finkel,et al. The Mira-Titan Universe. II. Matter Power Spectrum Emulation , 2017, 1705.03388.
[3] A. Hopkins,et al. A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups , 2017, 1703.06657.
[4] N. R. Napolitano,et al. The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.
[5] M. Martinelli,et al. Impact of theoretical priors in cosmological analyses: the case of single field quintessence , 2017, 1702.06526.
[6] C. Heymans,et al. Precision calculations of the cosmic shear power spectrum projection , 2017, 1702.05301.
[7] Edward J. Wollack,et al. Cosmological Parameters From Pre-Planck CMB Measurements: A 2017 Update , 2017, 1702.03272.
[8] C. Heymans,et al. The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample to r < 19.5 , 2016, 1612.00839.
[9] A. Slosar,et al. Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.
[10] S. Ho,et al. Testing gravity on large scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS CMASS , 2016, 1610.09410.
[11] H. Hoekstra,et al. KiDS-450: testing extensions to the standard cosmological model , 2016, 1610.04606.
[12] D. Gerdes,et al. Inference from the Small Scales of Cosmic Shear with Current and Future Dark Energy Survey Data , 2016, 1608.01838.
[13] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[14] H. Hoekstra,et al. Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.
[15] Shahab Joudaki,et al. CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics , 2016, 1601.05786.
[16] C. Heymans,et al. The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.
[17] A. Silvestri,et al. What can cosmology tell us about gravity? Constraining Horndeski gravity with Σ and μ , 2016, 1606.05339.
[18] C. A. Oxborrow,et al. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.
[19] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[20] C. Heymans,et al. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces , 2016, 1602.02154.
[21] A. Heavens,et al. Parameter inference with estimated covariance matrices , 2015, 1511.05969.
[22] Shirley Ho,et al. Constraining gravity at the largest scales through CMB lensing and galaxy velocities , 2015, 1511.04457.
[23] A. Melchiorri,et al. Cosmological hints of modified gravity , 2015, 1509.07501.
[24] W. Percival,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies , 2015, 1509.06386.
[25] H. Hoekstra,et al. A direct measurement of tomographic lensing power spectra from CFHTLenS , 2015, 1509.04071.
[26] C. B. D'Andrea,et al. Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.
[27] C. Heymans,et al. RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure , 2015, 1507.03086.
[28] G. W. Pratt,et al. Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.
[29] D. Parkinson,et al. Searching for modified gravity: scale and redshift dependent constraints from galaxy peculiar velocities , 2015, 1504.06885.
[30] C. A. Oxborrow,et al. Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .
[31] Michael D. Schneider,et al. COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. II. FULL COSMOLOGICAL PARAMETER CONSTRAINTS FROM TOMOGRAPHY , 2015, 1510.03962.
[32] Edwin Valentijn,et al. Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.
[33] Massimo Brescia,et al. The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.
[34] J. A. Vázquez-Mata,et al. Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.
[35] Shahab Joudaki,et al. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.
[36] Davide Bianchi,et al. Measuring line-of-sight-dependent Fourier-space clustering using FFTs , 2015, 1505.05341.
[37] Alina Kiessling,et al. Galaxy Alignments: An Overview , 2015, 1504.05456.
[38] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[39] D. Parkinson,et al. Constraints and tensions in testing general relativity from Planck and CFHTLenS data including intrinsic alignment systematics , 2015, 1501.03119.
[40] S. More,et al. Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.
[41] S. Bridle,et al. Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.
[42] Ludovic van Waerbeke,et al. Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.
[43] R. Hložek,et al. Planck data reconsidered , 2013, 1312.3313.
[44] E. Gaztañaga,et al. Combining spectroscopic and photometric surveys: Same or different sky? , 2014, 1412.8429.
[45] Alan D. Martin,et al. Review of Particle Physics , 2014 .
[46] J. Brownstein,et al. THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.
[47] N. G. Best,et al. The deviance information criterion: 12 years on , 2014 .
[48] Jean Coupon,et al. athena: Tree code for second-order correlation functions , 2014 .
[49] J. Schaye,et al. Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.
[50] Ashley J. Ross,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.
[51] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[52] O. Dor'e,et al. USING CROSS CORRELATIONS TO CALIBRATE LENSING SOURCE REDSHIFT DISTRIBUTIONS: IMPROVING COSMOLOGICAL CONSTRAINTS FROM UPCOMING WEAK LENSING SURVEYS , 2013, 1306.0534.
[53] Edward J. Wollack,et al. Cosmological parameters from pre-planck cosmic microwave background measurements , 2013 .
[54] R. Smith,et al. Halo stochasticity from exclusion and nonlinear clustering , 2013, 1305.2917.
[55] Earl Lawrence,et al. THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.
[56] Yannick Mellier,et al. CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.
[57] M. White,et al. On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.
[58] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[59] H. Hoekstra,et al. CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions , 2012, 1212.3339.
[60] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: the low-redshift sample , 2012, 1211.3976.
[61] Princeton,et al. Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.
[62] H. Hoekstra,et al. Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.
[63] C. Skordis,et al. The Parameterized Post-Friedmann Framework for Theories of Modified Gravity: Concepts, Formalism and Examples. , 2012, 1209.2117.
[64] Hugh Merz,et al. High Performance P3M N-body code: CUBEP3M , 2012, 1208.5098.
[65] S. Joudaki. Constraints on Neutrino Mass and Light Degrees of Freedom in Extended Cosmological Parameter Spaces , 2012, 1202.0005.
[66] L. Miller,et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.
[67] Takahiro Nishimichi,et al. REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.
[68] E. A. Valentijn,et al. The Astro-WISE datacentric information system , 2012, 1208.0447.
[69] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[70] Spatial Curvature and Cosmological Tests of General Relativity , 2012, 1205.2422.
[71] Will Saunders,et al. The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.
[72] Scott Croom,et al. The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.
[73] Daniel Thomas,et al. The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.
[74] M. Kaplinghat,et al. Dark Energy and Neutrino Masses from Future Measurements of the Expansion History and Growth of Structure , 2011, 1106.0299.
[75] G. Bernstein,et al. Combining weak-lensing tomography and spectroscopic redshift surveys , 2011, 1112.4478.
[76] H. Hoekstra,et al. CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.
[77] Jason Dossett,et al. Testing general relativity at cosmological scales: Implementation and parameter correlations , 2011, 1109.4583.
[78] M. Viel,et al. Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.
[79] Scott Croom,et al. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.
[80] Matthew Colless,et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.
[81] H. Hoekstra,et al. Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.
[82] Joop Schaye,et al. The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.
[83] R. Nichol,et al. Complementarity of weak lensing and peculiar velocity measurements in testing general relativity , 2010, 1011.2106.
[84] University College London,et al. Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.
[85] Rachel Mandelbaum,et al. Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.
[86] R. Nichol,et al. Probing modifications of general relativity using current cosmological observations , 2010, 1003.0001.
[87] R. Bean,et al. Current constraints on the cosmic growth history , 2010, 1002.4197.
[88] Tristan L. Smith,et al. Testing general relativity with current cosmological data , 2010, 1002.1962.
[89] Argelander-Institut fur Astronomie,et al. Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations , 2009, 0911.2454.
[90] J. Schaye,et al. The physics driving the cosmic star formation history , 2009, 0909.5196.
[91] Ipmu,et al. Tests of Gravity from Imaging and Spectroscopic Surveys , 2009, 0906.2221.
[92] N. Afshordi,et al. Extended Limber Approximation , 2008, 0809.5112.
[93] R. Trotta. Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.
[94] E. Bertschinger,et al. Distinguishing modified gravity from dark energy , 2008, 0801.2431.
[95] B. Jain,et al. Observational Tests of Modified Gravity , 2007, 0709.2375.
[96] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[97] Scott Dodelson,et al. Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.
[98] Sarah Bridle,et al. Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.
[99] A. Liddle,et al. Information criteria for astrophysical model selection , 2007, astro-ph/0701113.
[100] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[101] A. Slosar,et al. Bayesian evidence as a tool for comparing datasets , 2004, astro-ph/0412535.
[102] U. Seljak,et al. Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.
[103] B. Jain,et al. Joint galaxy - lensing observables and the dark energy , 2003, astro-ph/0312395.
[104] E. Linder. Exploring the expansion history of the universe. , 2002, Physical review letters.
[105] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[106] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[107] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[108] M. Chevallier,et al. ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.
[109] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[110] Limin Wang,et al. Quintessence, cosmic coincidence, and the cosmological constant , 1998, astro-ph/9807002.
[111] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[112] P. Steinhardt,et al. Cosmological imprint of an energy component with general equation of state , 1997, astro-ph/9708069.
[113] A. Heavens,et al. Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.
[114] A. Taylor,et al. Non-linear cosmological power spectra in real and redshift space , 1996, astro-ph/9604020.
[115] E. Bertschinger,et al. Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1994, astro-ph/9401007.
[116] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[117] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[118] B. Paczyński,et al. An evolution free test for non-zero cosmological constant , 1979, Nature.
[119] D. Nelson Limber,et al. The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .
[120] H. Jeffreys. The Theory of Probability , 1896 .