KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering

We perform a combined analysis of cosmic shear tomography, galaxy-galaxy lensing tomography, and redshift-space multipole power spectra (monopole and quadrupole) using 450 deg(2) of imaging data by the Kilo Degree Survey (KiDS-450) overlapping with two spectroscopic surveys: the 2-degree Field Lensing Survey (2dFLenS) and the Baryon Oscillation Spectroscopic Survey (BOSS). We restrict the galaxy-galaxy lensing and multipole power spectrum measurements to the overlapping regions with KiDS, and self-consistently compute the full covariance between the different observables using a large suite of N-body simulations. We methodically analyse different combinations of the observables, finding that the galaxy-galaxy lensing measurements are particularly useful in improving the constraint on the intrinsic alignment amplitude, while the multipole power spectra are useful in tightening the constraints along the lensing degeneracy direction. The fully combined constraint on S-8 = sigma(8) root Omega(m)/0.3 = 0.742 +/- 0.035, which is an improvement by 20 per cent compared to KiDS alone, corresponds to a 2.6 sigma discordance with Planck, and is not significantly affected by fitting to a more conservative set of scales. Given the tightening of the parameter space, we are unable to resolve the discordance with an extended cosmology that is simultaneously favoured in a model selection sense, including the sum of neutrino masses, curvature, evolving dark energy and modified gravity. The complementarity of our observables allows for constraints on modified gravity degrees of freedom that are not simultaneously bounded with either probe alone, and up to a factor of three improvement in the S-8 constraint in the extended cosmology compared to KiDS alone.

[1]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[2]  Hal Finkel,et al.  The Mira-Titan Universe. II. Matter Power Spectrum Emulation , 2017, 1705.03388.

[3]  A. Hopkins,et al.  A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups , 2017, 1703.06657.

[4]  N. R. Napolitano,et al.  The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.

[5]  M. Martinelli,et al.  Impact of theoretical priors in cosmological analyses: the case of single field quintessence , 2017, 1702.06526.

[6]  C. Heymans,et al.  Precision calculations of the cosmic shear power spectrum projection , 2017, 1702.05301.

[7]  Edward J. Wollack,et al.  Cosmological Parameters From Pre-Planck CMB Measurements: A 2017 Update , 2017, 1702.03272.

[8]  C. Heymans,et al.  The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample to r < 19.5 , 2016, 1612.00839.

[9]  A. Slosar,et al.  Galaxy–galaxy lensing estimators and their covariance properties , 2016, 1611.00752.

[10]  S. Ho,et al.  Testing gravity on large scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS CMASS , 2016, 1610.09410.

[11]  H. Hoekstra,et al.  KiDS-450: testing extensions to the standard cosmological model , 2016, 1610.04606.

[12]  D. Gerdes,et al.  Inference from the Small Scales of Cosmic Shear with Current and Future Dark Energy Survey Data , 2016, 1608.01838.

[13]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[14]  H. Hoekstra,et al.  Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.

[15]  Shahab Joudaki,et al.  CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics , 2016, 1601.05786.

[16]  C. Heymans,et al.  The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.

[17]  A. Silvestri,et al.  What can cosmology tell us about gravity? Constraining Horndeski gravity with Σ and μ , 2016, 1606.05339.

[18]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[19]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[20]  C. Heymans,et al.  Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces , 2016, 1602.02154.

[21]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[22]  Shirley Ho,et al.  Constraining gravity at the largest scales through CMB lensing and galaxy velocities , 2015, 1511.04457.

[23]  A. Melchiorri,et al.  Cosmological hints of modified gravity , 2015, 1509.07501.

[24]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies , 2015, 1509.06386.

[25]  H. Hoekstra,et al.  A direct measurement of tomographic lensing power spectra from CFHTLenS , 2015, 1509.04071.

[26]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[27]  C. Heymans,et al.  RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure , 2015, 1507.03086.

[28]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[29]  D. Parkinson,et al.  Searching for modified gravity: scale and redshift dependent constraints from galaxy peculiar velocities , 2015, 1504.06885.

[30]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[31]  Michael D. Schneider,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. II. FULL COSMOLOGICAL PARAMETER CONSTRAINTS FROM TOMOGRAPHY , 2015, 1510.03962.

[32]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[33]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[34]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[35]  Shahab Joudaki,et al.  An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.

[36]  Davide Bianchi,et al.  Measuring line-of-sight-dependent Fourier-space clustering using FFTs , 2015, 1505.05341.

[37]  Alina Kiessling,et al.  Galaxy Alignments: An Overview , 2015, 1504.05456.

[38]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[39]  D. Parkinson,et al.  Constraints and tensions in testing general relativity from Planck and CFHTLenS data including intrinsic alignment systematics , 2015, 1501.03119.

[40]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[41]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[42]  Ludovic van Waerbeke,et al.  Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.

[43]  R. Hložek,et al.  Planck data reconsidered , 2013, 1312.3313.

[44]  E. Gaztañaga,et al.  Combining spectroscopic and photometric surveys: Same or different sky? , 2014, 1412.8429.

[45]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[46]  J. Brownstein,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.

[47]  N. G. Best,et al.  The deviance information criterion: 12 years on , 2014 .

[48]  Jean Coupon,et al.  athena: Tree code for second-order correlation functions , 2014 .

[49]  J. Schaye,et al.  Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.

[50]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.

[51]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[52]  O. Dor'e,et al.  USING CROSS CORRELATIONS TO CALIBRATE LENSING SOURCE REDSHIFT DISTRIBUTIONS: IMPROVING COSMOLOGICAL CONSTRAINTS FROM UPCOMING WEAK LENSING SURVEYS , 2013, 1306.0534.

[53]  Edward J. Wollack,et al.  Cosmological parameters from pre-planck cosmic microwave background measurements , 2013 .

[54]  R. Smith,et al.  Halo stochasticity from exclusion and nonlinear clustering , 2013, 1305.2917.

[55]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[56]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[57]  M. White,et al.  On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.

[58]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[59]  H. Hoekstra,et al.  CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions , 2012, 1212.3339.

[60]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: the low-redshift sample , 2012, 1211.3976.

[61]  Princeton,et al.  Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.

[62]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[63]  C. Skordis,et al.  The Parameterized Post-Friedmann Framework for Theories of Modified Gravity: Concepts, Formalism and Examples. , 2012, 1209.2117.

[64]  Hugh Merz,et al.  High Performance P3M N-body code: CUBEP3M , 2012, 1208.5098.

[65]  S. Joudaki Constraints on Neutrino Mass and Light Degrees of Freedom in Extended Cosmological Parameter Spaces , 2012, 1202.0005.

[66]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[67]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[68]  E. A. Valentijn,et al.  The Astro-WISE datacentric information system , 2012, 1208.0447.

[69]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[70]  Spatial Curvature and Cosmological Tests of General Relativity , 2012, 1205.2422.

[71]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[72]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.

[73]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[74]  M. Kaplinghat,et al.  Dark Energy and Neutrino Masses from Future Measurements of the Expansion History and Growth of Structure , 2011, 1106.0299.

[75]  G. Bernstein,et al.  Combining weak-lensing tomography and spectroscopic redshift surveys , 2011, 1112.4478.

[76]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[77]  Jason Dossett,et al.  Testing general relativity at cosmological scales: Implementation and parameter correlations , 2011, 1109.4583.

[78]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[79]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[80]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[81]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[82]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[83]  R. Nichol,et al.  Complementarity of weak lensing and peculiar velocity measurements in testing general relativity , 2010, 1011.2106.

[84]  University College London,et al.  Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.

[85]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[86]  R. Nichol,et al.  Probing modifications of general relativity using current cosmological observations , 2010, 1003.0001.

[87]  R. Bean,et al.  Current constraints on the cosmic growth history , 2010, 1002.4197.

[88]  Tristan L. Smith,et al.  Testing general relativity with current cosmological data , 2010, 1002.1962.

[89]  Argelander-Institut fur Astronomie,et al.  Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations , 2009, 0911.2454.

[90]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[91]  Ipmu,et al.  Tests of Gravity from Imaging and Spectroscopic Surveys , 2009, 0906.2221.

[92]  N. Afshordi,et al.  Extended Limber Approximation , 2008, 0809.5112.

[93]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[94]  E. Bertschinger,et al.  Distinguishing modified gravity from dark energy , 2008, 0801.2431.

[95]  B. Jain,et al.  Observational Tests of Modified Gravity , 2007, 0709.2375.

[96]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[97]  Scott Dodelson,et al.  Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.

[98]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[99]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[100]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[101]  A. Slosar,et al.  Bayesian evidence as a tool for comparing datasets , 2004, astro-ph/0412535.

[102]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[103]  B. Jain,et al.  Joint galaxy - lensing observables and the dark energy , 2003, astro-ph/0312395.

[104]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[105]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[106]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[107]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[108]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[109]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[110]  Limin Wang,et al.  Quintessence, cosmic coincidence, and the cosmological constant , 1998, astro-ph/9807002.

[111]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[112]  P. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1997, astro-ph/9708069.

[113]  A. Heavens,et al.  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[114]  A. Taylor,et al.  Non-linear cosmological power spectra in real and redshift space , 1996, astro-ph/9604020.

[115]  E. Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1994, astro-ph/9401007.

[116]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[117]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[118]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[119]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .

[120]  H. Jeffreys The Theory of Probability , 1896 .