Noncoding transcription at enhancers: general principles and functional models.

Mammalian genomes are extensively transcribed outside the borders of protein-coding genes. Genome-wide studies recently demonstrated that cis-regulatory genomic elements implicated in transcriptional control, such as enhancers and locus-control regions, represent major sites of extragenic noncoding transcription. Enhancer-templated transcripts provide a quantitatively small contribution to the total amount of cellular nonribosomal RNA; nevertheless, the possibility that enhancer transcription and the resulting enhancer RNAs may, in some cases, have functional roles, rather than represent mere transcriptional noise at accessible genomic regions, is supported by an increasing amount of experimental data. In this article we review the current knowledge on enhancer transcription and its functional implications.

[1]  Monika S. Kowalczyk,et al.  Intragenic enhancers act as alternative promoters. , 2012, Molecular cell.

[2]  E. Furlong,et al.  Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development , 2012, Nature Genetics.

[3]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[4]  A. Visel,et al.  Large-Scale Discovery of Enhancers from Human Heart Tissue , 2011, Nature Genetics.

[5]  Wouter de Laat,et al.  A Regulatory Archipelago Controls Hox Genes Transcription in Digits , 2011, Cell.

[6]  Michael F. Melgar,et al.  Discovery of active enhancers through bidirectional expression of short transcripts , 2011, Genome Biology.

[7]  Ananda L Roy,et al.  Enhancer-promoter communication and transcriptional regulation of Igh. , 2011, Trends in immunology.

[8]  J. Andrau,et al.  Initiating RNA Polymerase II and TIPs as hallmarks of enhancer activity and tissue-specificity , 2011, Transcription.

[9]  S. Spicuglia,et al.  H3K4 tri‐methylation provides an epigenetic signature of active enhancers , 2011, The EMBO journal.

[10]  Elinore M Mercer,et al.  Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors. , 2011, Immunity.

[11]  Eugene Bolotin,et al.  The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. , 2011, Molecular cell.

[12]  Zhike Lu,et al.  Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification , 2011, Cell.

[13]  Jie Wang,et al.  Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites. , 2011, Developmental biology.

[14]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[15]  M. Gut,et al.  Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters , 2011, Nature Structural &Molecular Biology.

[16]  P. Scacheri,et al.  Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. , 2011, Genome research.

[17]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[18]  Paulo P. Amaral,et al.  The Reality of Pervasive Transcription , 2011, PLoS biology.

[19]  Albert E. Almada,et al.  Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome , 2011, Proceedings of the National Academy of Sciences.

[20]  C. Glass,et al.  Reprogramming Transcription via Distinct Classes of Enhancers Functionally Defined by eRNA , 2011, Nature.

[21]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[22]  M. Groudine,et al.  Functional and Mechanistic Diversity of Distal Transcription Enhancers , 2011, Cell.

[23]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[24]  Sohail Malik,et al.  The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation , 2010, Nature Reviews Genetics.

[25]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[26]  M. Levine Transcriptional Enhancers in Animal Development and Evolution , 2010, Current Biology.

[27]  A. Visel,et al.  ChIP-Seq identification of weakly conserved heart enhancers , 2010, Nature Genetics.

[28]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[29]  J. Rinn,et al.  A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response , 2010, Cell.

[30]  G. Natoli Maintaining cell identity through global control of genomic organization. , 2010, Immunity.

[31]  D. Taatjes,et al.  The human Mediator complex: a versatile, genome-wide regulator of transcription. , 2010, Trends in biochemical sciences.

[32]  J. Ragoussis,et al.  A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers , 2010, PLoS biology.

[33]  T. Hughes,et al.  Most “Dark Matter” Transcripts Are Associated With Known Genes , 2010, PLoS biology.

[34]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[35]  J. Ragoussis,et al.  Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. , 2010, Immunity.

[36]  A. Rudensky,et al.  Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate , 2010, Nature.

[37]  Alexander Stark,et al.  Comparative genomics of gene regulation-conservation and divergence of cis-regulatory information. , 2009, Current opinion in genetics & development.

[38]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[39]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[40]  Leighton J. Core,et al.  Divergent transcription: A new feature of active promoters , 2009, Cell cycle.

[41]  C. Ponting,et al.  Genomic and Transcriptional Co-Localization of Protein-Coding and Long Non-Coding RNA Pairs in the Developing Brain , 2009, PLoS genetics.

[42]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[43]  Timothy W. Sikorski,et al.  The basal initiation machinery: beyond the general transcription factors. , 2009, Current opinion in cell biology.

[44]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[45]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[46]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[47]  Dustin E. Schones,et al.  Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. , 2009, Cell stem cell.

[48]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[49]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[50]  Mikkel H. Schierup,et al.  RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters , 2008, Science.

[51]  T. Shibata,et al.  Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs , 2008, Nature.

[52]  C. Bonifer,et al.  The LPS-Induced Transcriptional Upregulation of the Chicken Lysozyme Locus Involves CTCF Eviction and Noncoding RNA Transcription , 2008, Molecular cell.

[53]  Chris P. Ponting,et al.  The functional repertoires of metazoan genomes , 2008, Nature Reviews Genetics.

[54]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[55]  J. Andrau,et al.  Genome-wide RNA polymerase II: not genes only! , 2008, Trends in biochemical sciences.

[56]  C. Glass,et al.  Induced ncRNAs Allosterically Modify RNA Binding Proteins in cis to Inhibit Transcription , 2008, Nature.

[57]  D. Higgs,et al.  Long-range regulation of alpha-globin gene expression. , 2008, Advances in genetics.

[58]  F. Grosveld,et al.  Beta-globin regulation and long-range interactions. , 2008, Advances in genetics.

[59]  M. Krangel,et al.  Noncoding transcription controls downstream promoters to regulate T‐cell receptor α recombination , 2007, The EMBO journal.

[60]  David Haussler,et al.  Human Genome Ultraconserved Elements Are Ultraselected , 2007, Science.

[61]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[62]  William Stafford Noble,et al.  Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project , 2007, Nature.

[63]  P. Stadler,et al.  RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription , 2007, Science.

[64]  F. Grosveld,et al.  β-Globin Active Chromatin Hub Formation in Differentiating Erythroid Cells and in p45 NF-E2 Knock-out Mice* , 2007, Journal of Biological Chemistry.

[65]  V. Iyer,et al.  FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. , 2007, Genome research.

[66]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[67]  C. Hertel,et al.  A role for noncoding transcription in activation of the yeast PHO5 gene , 2007, Proceedings of the National Academy of Sciences.

[68]  C. Ponting,et al.  Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. , 2007, Genome research.

[69]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[70]  Douglas R Higgs,et al.  Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. , 2007, The EMBO journal.

[71]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[72]  Daniel Chourrout,et al.  Genome Regulation by Polycomb and Trithorax Proteins , 2007, Cell.

[73]  K. Struhl Transcriptional noise and the fidelity of initiation by RNA polymerase II , 2007, Nature Structural &Molecular Biology.

[74]  Ivan Ovcharenko,et al.  Predicting tissue-specific enhancers in the human genome. , 2006, Genome research.

[75]  F. Grosveld,et al.  Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. , 2007, The Journal of biological chemistry.

[76]  Christopher L. Warren,et al.  Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. , 2006, Molecular cell.

[77]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[78]  Alan M. Moses,et al.  In vivo enhancer analysis of human conserved non-coding sequences , 2006, Nature.

[79]  Brian S. Clark,et al.  The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. , 2006, Genes & development.

[80]  I. Grummt,et al.  Intergenic transcripts regulate the epigenetic state of rRNA genes. , 2006, Molecular cell.

[81]  Martin S. Taylor,et al.  Genome-wide analysis of mammalian promoter architecture and evolution , 2006, Nature Genetics.

[82]  Shyam Prabhakar,et al.  Close sequence comparisons are sufficient to identify human cis-regulatory elements. , 2005, Genome research.

[83]  A. Dean On a chromosome far, far away: LCRs and gene expression. , 2006, Trends in genetics : TIG.

[84]  Fred Winston,et al.  in Saccharomyces cerevisiae , 2005 .

[85]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[86]  B. Séraphin,et al.  Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase , 2005, Cell.

[87]  G. Helt,et al.  Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution , 2005, Science.

[88]  R. Paro,et al.  Intergenic transcription through a polycomb group response element counteracts silencing. , 2005, Genes & development.

[89]  E. Schadt,et al.  Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. , 2005, Trends in genetics : TIG.

[90]  D. Tuan,et al.  HS2 Enhancer Function Is Blocked by a Transcriptional Terminator Inserted between the Enhancer and the Promoter*[boxs] , 2004, Journal of Biological Chemistry.

[91]  Fred Winston,et al.  Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene , 2004, Nature.

[92]  D. Haussler,et al.  Ultraconserved Elements in the Human Genome , 2004, Science.

[93]  P. Fraser,et al.  Antisense intergenic transcription in V(D)J recombination , 2004, Nature Immunology.

[94]  Nikolaus Rajewsky,et al.  A cis element in the recombination activating gene locus regulates gene expression by counteracting a distant silencer , 2004, Nature Immunology.

[95]  M. Antoniou,et al.  Analysis of intergenic transcription in the human IL-4/IL-13 gene cluster. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[96]  B. Oostra,et al.  A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. , 2003, Human molecular genetics.

[97]  Jessica Halow,et al.  The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. , 2003, Genes & development.

[98]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[99]  W. Reith,et al.  Chromatin remodeling and extragenic transcription at the MHC class II locus control region , 2003, Nature Immunology.

[100]  R. Paro,et al.  Transcription through Intergenic Chromosomal Memory Elements of the Drosophila Bithorax Complex Correlates with an Epigenetic Switch , 2002, Molecular and Cellular Biology.

[101]  W. Bender,et al.  Transcription activates repressed domains in the Drosophila bithorax complex. , 2002, Development.

[102]  F. Karch,et al.  Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. , 2002, Development.

[103]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[104]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[105]  P. Fraser,et al.  Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. , 2000, Molecular cell.

[106]  P. Cook The organization of replication and transcription. , 1999, Science.

[107]  D. Staynov,et al.  Intergenic transcription occurs throughout the human IL-4/IL-13 gene cluster. , 1999, Biochemical and biophysical research communications.

[108]  D. Kioussis,et al.  Hierarchical interactions of control elements determine CD8alpha gene expression in subsets of thymocytes and peripheral T cells. , 1998, Immunity.

[109]  G. Orphanides,et al.  A Human RNA Polymerase II Complex Containing Factors That Modify Chromatin Structure , 1998, Molecular and Cellular Biology.

[110]  J. T. Kadonaga,et al.  Going the distance: a current view of enhancer action. , 1998, Science.

[111]  C. Glass,et al.  Transcription factor-specific requirements for coactivators and their acetyltransferase functions. , 1998, Science.

[112]  E. Davidson,et al.  Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae. , 1997, Development.

[113]  H. Ashe,et al.  Intergenic transcription and transinduction of the human beta-globin locus. , 1997, Genes & development.

[114]  F. Watrin,et al.  Deletion of the mouse T-cell receptor beta gene enhancer blocks alphabeta T-cell development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[115]  R. Young,et al.  RNA Polymerase II Holoenzyme Contains SWI/SNF Regulators Involved in Chromatin Remodeling , 1996, Cell.

[116]  Michael R. Green,et al.  Nuclear protein CBP is a coactivator for the transcription factor CREB , 1994, Nature.

[117]  Yang Li,et al.  A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II , 1994, Cell.

[118]  Tom Maniatis,et al.  Transcriptional activation: A complex puzzle with few easy pieces , 1994, Cell.

[119]  Richard A. Young,et al.  An RNA polymerase II holoenzyme responsive to activators , 1994, Nature.

[120]  F. Watrin,et al.  TCR beta and TCR alpha gene enhancers confer tissue‐ and stage‐specificity on V(D)J recombination events. , 1993, The EMBO journal.

[121]  D. Tuan,et al.  Transcription of the hypersensitive site HS2 enhancer in erythroid cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[122]  F. Grosveld,et al.  Definition of the minimal requirements within the human beta‐globin gene and the dominant control region for high level expression. , 1990, The EMBO journal.

[123]  M. Atchison,et al.  Enhancers: mechanisms of action and cell specificity. , 1988, Annual Review of Cell Biology.

[124]  R. Treisman,et al.  Simian virus 40 enhancer increases number of RNA polymerase II molecules on linked DNA , 1985, Nature.

[125]  Robert Tjian,et al.  Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins , 1985, Nature.

[126]  H. Zentgraf,et al.  A transcription enhancer acts in vitro over distances of hundreds of base-pairs on both circular and linear templates but not on chromatin-reconstituted DNA. , 1984, Journal of molecular biology.

[127]  J. Banerji,et al.  Expression of a β-globin gene is enhanced by remote SV40 DNA sequences , 1981, Cell.

[128]  P. Chambon,et al.  The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. , 1981, Nucleic acids research.

[129]  J. Banerji,et al.  Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. , 1981, Cell.

[130]  Carl Wu The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I , 1980, Nature.

[131]  M. Birnstiel,et al.  More ribosomal spacer sequences from Xenopus laevis. , 1980, Nucleic acids research.

[132]  T. Moss,et al.  Sequence organization of the spacer DNA in a ribosomal gene unit of Xenopus laevis , 1979, Cell.

[133]  N. Morris Nucleosome structure in Aspergillus nidulans , 1976, Cell.

[134]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.