Damage model for metal–matrix composite under high intensity loading

Abstract A damage model for a composite structure under high intensity dynamic loading is presented. The model is based on a thermodynamic micromechanic approach, which is formulated using the conservation laws and the energy balance equations (the first and second laws of thermodynamics). A homogenization or averaging technique is implemented in the development to simplify the representation of the non-homogeneous material. The metal–matrix composite's inelastic response is modeled using elastic–plastic constitutive relations considering finite plastic strain and damage effect. The damage model is validated with experimental data available in the literatures, and it shows fairly good agreement. A parametric study demonstrating the characteristics of the damage model is also presented.

[1]  A. Palazotto,et al.  Comparison of two viscoplastic flow laws as applied to a problem of crack growth , 1985 .

[2]  George Z. Voyiadjis,et al.  Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors , 1999 .

[3]  R. L. Sierakowski,et al.  Strain Rate Effects in Composites , 1997 .

[4]  George Z. Voyiadjis,et al.  Finite element analysis of the piezocone test in cohesive soils using an elastoplastic–viscoplastic model and updated Lagrangian formulation , 2003 .

[5]  J. Boyer,et al.  A shear stress dependent ductile damage model , 2002 .

[6]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[7]  A. Palazotto,et al.  Thermodynamic Damage Model for Composite Under Severe Loading , 2000 .

[8]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[9]  Lynn Seaman,et al.  Dynamic failure of solids , 1987 .

[10]  Dusan Krajcinovic,et al.  Damage tensors and the crack density distribution , 1993 .

[11]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[12]  Rodney Hill,et al.  Progress in solid mechanics , 1963 .

[13]  M. Gurtin On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients , 2003 .

[14]  T. Nicholas,et al.  Modeling thermal fatigue damage in metal-matrix composites , 1994 .

[15]  N. J. Pagano,et al.  Thermo-elastic model for multidirectional coated-fiber composites: Traction formulation , 1990 .

[16]  M. Rashid,et al.  The effect of plastic spin on anisotropic material behavior , 1989 .

[17]  Dusan Krajcinovic,et al.  High-velocity expansion of a cavity within a brittle material , 1999 .

[18]  Jonas A. Zukas,et al.  High velocity impact dynamics , 1990 .

[19]  James F. Shackelford,et al.  The CRC Materials Science And Engineering Handbook , 1991 .

[20]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[21]  S. Murakami,et al.  Notion of Continuum Damage Mechanics and its Application to Anisotropic Creep Damage Theory , 1983 .

[22]  Anthony N. Palazotto,et al.  Nonlinear displacement-based finite-element analyses of composite shells: a new total Lagrangian formulation , 1995 .

[23]  R. Armstrong,et al.  Dislocation-mechanics-based constitutive relations for material dynamics calculations , 1987 .

[24]  Anthony N. Palazotto,et al.  Nonlinear Analysis of Shell Structures , 1992 .

[25]  George Z. Voyiadjis,et al.  A coupled anisotropic damage model for the inelastic response of composite materials , 2000 .

[26]  William K. Rule,et al.  A revised form for the Johnson-Cook strength model , 1998 .

[27]  C. Sun,et al.  Mechanical Characterization of SCS-6/Ti-6-4 Metal Matrix Composite , 1990 .

[28]  F. A. Leckie,et al.  The constitutive equations of continuum creep damage mechanics , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  J. L. Zeman,et al.  Topics in Applied Continuum Mechanics , 1974 .

[30]  D. Owen,et al.  Finite elements in plasticity : theory and practice , 1980 .

[31]  N. J. Pagano,et al.  Elastic response of multi-directional coated-fiber composites , 1988 .

[32]  George J. Dvorak,et al.  Composite materials: Inelastic behavior, damage, fatigue and fracture , 2000 .

[33]  J. Hutchinson,et al.  Effect of matrix cracking on the overall thermal conductivity of fibre-reinforced composites , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[34]  Dusan Krajcinovic,et al.  Constitutive Equations for Damaging Materials , 1983 .

[35]  F. Sidoroff,et al.  Damage Induced Elastic Anisotropy , 1982 .

[36]  A. Palazotto,et al.  Thermomicromechanical Damage in Composites , 2001 .

[37]  J. F. Saltsman,et al.  Tensile deformation damage in SiC reinforced Ti-15V-3Cr-3Al-3Sn , 1991 .

[38]  Mark Kachanov,et al.  Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts , 1992 .

[39]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[40]  Kunio Hayakawa,et al.  Thermodynamical Modeling of Elastic-Plastic Damage and Experimental Validation of Damage Potential , 1997 .

[41]  M. V. Yumashev,et al.  Deformation and failure under impact loading. model of a thermoelastoplastic medium , 1990 .

[42]  Leonard E. Schwer,et al.  Computational techniques for contact, impact, penetration, and perforation of solids : presentead at the Winter Annual Meeting of the American Society of Mechanical Engineers, San Francisco, California, December 10-15, 1989 , 1989 .

[43]  Anthony N. Palazotto,et al.  Finite element elastic-plastic analysis of cracks , 1989 .

[44]  Michael Ortiz,et al.  Effect of Strain Hardening and Rate Sensitivity on the Dynamic Growth of a Void in a Plastic Material , 1992 .

[45]  N. J. Pagano,et al.  Stress fields in composite laminates , 1978 .

[46]  Dusan Krajcinovic,et al.  Continuum damage mechanics theory and applications , 1987 .

[47]  F. Sidoroff,et al.  Description of Anisotropic Damage Application to Elasticity , 1981 .

[48]  A. Palazotto,et al.  The Viscoplastic Crack Growth Behavior of a Compact Tension Specimen Using the Bodner-Partom Flow Law. , 1984 .

[49]  A. Needleman,et al.  Fundamentals of metal-matrix composites , 1993 .

[50]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[51]  T. Nicholas An approach to fatigue life modeling in titanium-matrix composites , 1995 .

[52]  B. M. Butcher,et al.  A criterion for the time dependence of dynamic fracture , 1968 .

[53]  Yannis F. Dafalias,et al.  Plastic spin: necessity or redundancy? , 1998 .

[54]  T. Nicholas,et al.  Cyclic behavior of unidirectional and cross-ply titanium matrix composites , 1996 .