The optimal spectral gap for regular and disordered harmonic networks of oscillators

We consider one-dimensional chains and multi-dimensional networks of harmonic oscillators coupled to two Langevin heat reservoirs at different temperatures. Each particle interacts with its nearest neighbors by harmonic potentials and all individual particles are confined by harmonic potentials, too. In this article, we provide, for the first time, the sharp N dependence of the spectral gap of the associated generator under various physical assumptions and for different spatial dimensions. Our method of proof relies on a new approach to analyze a non self-adjoint eigenvalue problem involving low-rank non-hermitian perturbations of auxiliary discrete Schrodinger operators.

[1]  B. Simon,et al.  Localization for off-diagonal disorder and for continuous Schrödinger operators , 1987 .

[2]  J. Eckmann,et al.  Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures , 1998, chao-dyn/9804001.

[3]  A. Shirikyan,et al.  Entropic Fluctuations in Thermally Driven Harmonic Networks , 2016, 1606.01498.

[4]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[5]  Y. Fyodorov,et al.  Almost-Hermitian random matrices: eigenvalue density in the complex plane , 1996, cond-mat/9606173.

[6]  J. Eckmann,et al.  Non-equilibrium steady states for networks of oscillators , 2017, 1712.09413.

[7]  A. J. O'Connor,et al.  Heat conduction and sound transmission in isotopically disordered harmonic crystals , 1974 .

[8]  S. Olla,et al.  Hydrodynamic Limit for a Disordered Harmonic Chain , 2017, Communications in Mathematical Physics.

[9]  W. L. Greer,et al.  Abnormal Lattice Thermal Conductivity of a One‐Dimensional, Harmonic, Isotopically Disordered Crystal , 1971 .

[10]  Diego Pallara,et al.  Spectrum of Ornstein-Uhlenbeck Operators in Lp Spaces with Respect to Invariant Measures , 2002 .

[11]  P. Carmona,et al.  Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths , 2006, math/0611689.

[12]  T. Verheggen Transmission coefficient and heat conduction of a harmonic chain with random masses: Asymptotic estimates on products of random matrices , 1979 .

[14]  H. Kunz,et al.  One-dimensional wave equations in disordered media , 1983 .

[15]  A. Dhar Heat transport in low-dimensional systems , 2008, 0808.3256.

[16]  T. Dick,et al.  Foreword , 2010, Respiratory Physiology & Neurobiology.

[17]  Renaud Raqu'epas,et al.  Exponential mixing under controllability conditions for sdes driven by a degenerate Poisson noise , 2019, Stochastic Processes and their Applications.

[18]  J. Lebowitz,et al.  Heat flow in regular and disordered harmonic chains , 1971 .

[19]  S. Lepri Thermal Transport in Low Dimensions , 2016 .

[20]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[21]  J. Lebowitz,et al.  Fourier's Law: a Challenge for Theorists , 2000, math-ph/0002052.

[22]  Anton Arnold,et al.  Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift , 2014, 1409.5425.

[23]  J. Eckmann,et al.  Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors , 2014, 1411.0400.

[24]  Luc Rey-Bellet,et al.  Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics , 2002 .

[25]  E. Lieb,et al.  Properties of a Harmonic Crystal in a Stationary Nonequilibrium State , 1967 .

[26]  J. Eckmann,et al.  Entropy Production in Nonlinear, Thermally Driven Hamiltonian Systems , 1998, chao-dyn/9811001.

[27]  François Huveneers,et al.  Rigorous Scaling Law for the Heat Current in Disordered Harmonic Chain , 2010, 1003.1076.

[28]  Renaud Raquépas A Note on Harris’ Ergodic Theorem, Controllability and Perturbations of Harmonic Networks , 2018, Annales Henri Poincaré.

[29]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[30]  Pierre Monmarché Generalized Γ Calculus and Application to Interacting Particles on a Graph , 2019 .

[31]  Vladimir Zelevinsky,et al.  Dynamics and statistics of unstable quantum states , 1989 .

[32]  Martin Hairer How Hot Can a Heat Bath Get? , 2008, 0810.5431.

[33]  Jonathan C. Mattingly,et al.  Slow energy dissipation in anharmonic oscillator chains , 2007, 0712.3884.

[34]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[35]  Heat conduction in the disordered harmonic chain revisited. , 2001, Physical review letters.

[36]  C. Poquet,et al.  On the relaxation rate of short chains of rotors interacting with Langevin thermostats , 2016, 1604.03408.

[37]  A. Klein,et al.  A new proof of localization in the Anderson tight binding model , 1989 .

[38]  J. Eckmann,et al.  Non-Equilibrium Statistical Mechanics¶of Strongly Anharmonic Chains of Oscillators , 1999, chao-dyn/9909035.