Characterizations of the white noise test functionals and hida distributions
暂无分享,去创建一个
[1] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[2] B. Øksendal,et al. WICK MULTIPLICATION AND ITO-SKOROHOD STOCHASTIC DIFFERENTIAL EQUATIONS , 1991 .
[3] M. Röckner,et al. Uniqueness of generalized Schrödinger operators and applications , 1992 .
[4] L. Streit,et al. A Characterization of Hida Distributions , 1991 .
[5] Barry Simon,et al. The P(φ)[2] Euclidean (quantum) field theory , 1974 .
[6] Bernt Øksendal,et al. STOCHASTIC DIFFERENTIAL EQUATIONS INVOLVING POSITIVE NOISE , 1990 .
[7] J. Potthoff. White noise methods for stochastic partial differential equations , 1992 .
[8] Generalized functions on infinite dimensional spaces and its application to white noise calculus , 1989 .
[9] H. Kuo,et al. A Characterization of White Noise Test Functionals , 1991, Nagoya Mathematical Journal.
[10] G. Kallianpur. Stochastic differential equations and diffusion processes , 1981 .
[11] L. Streit,et al. The Feynman integrand as a Hida distribution , 1991 .
[12] Yuh-Jia Lee. Analytic version of test functionals, Fourier transform, and a characterization of measures in white noise calculus , 1991 .
[13] P. Meyer,et al. Les “fonctions caractéristiques” des distributions sur l’espace de Wiener , 1991 .
[14] Brownian functionals and applications , 1983 .
[15] Izumi Kubo,et al. Calculus on Gaussian white noise, II , 1980 .
[16] H. Kuo,et al. WHITE NOISE ANALYSIS: MATHEMATICS and APPLICATIONS , 1990 .
[17] L. Streit,et al. A Generalization of the characterization theorem for generalized functionals of white noise , 1991 .