A general Lee-Yang theorem for one-component and multicomponent ferromagnets

We show that any measure on ℝn possessing the Lee-Yang property retains that property when multiplied by a ferromagnetic pair interaction. Newman's Lee-Yang theorem for one-component ferromagnets with general single-spin measure is an immediate consequence. We also prove an analogous result for two-component ferromagnets. ForN-component ferromagnets (N ≧ 3), we prove a Lee-Yang theorem when the interaction is sufficiently anisotropic.

[1]  A. Sokal More inequalities for critical exponents , 1981 .

[2]  Zeros of the partition function and Gaussian inequalities for the plane rotator model , 1979 .

[3]  A note on the Lee-Yang theorem , 1981 .

[4]  David Ruelle,et al.  Some remarks on the location of zeroes of the partition function for lattice systems , 1973 .

[5]  Michael E. Fisher,et al.  Zeros of the Partition Function for the Heisenberg, Ferroelectric, and General Ising Models , 1971 .

[6]  David Ruelle,et al.  Extension of the Lee-Yang Circle Theorem , 1971 .

[7]  K. Gawȩdzki Existence of three phases for aP(ϕ)2 model of quantum field , 1978 .

[8]  F. Dunlop Analyticity of the pressure for Heisenberg and plane rotator models , 1979 .

[9]  M. Marden Geometry of Polynomials , 1970 .

[10]  C. Rheinboldt N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .

[11]  L. Schwartz Théorie des distributions , 1966 .

[12]  Y. Sinai,et al.  Phase diagrams of classical lattice systems , 1975 .

[13]  C. Newman Inequalities for Ising models and field theories which obey the Lee-Yang Theorem , 1975 .

[14]  O. Penrose,et al.  On the exponential decay of correlation functions , 1974 .

[15]  C. Newman Rigorous results for general ising ferromagnets , 1976 .

[16]  J. Korevaar,et al.  Entire Functions and Related Parts of Analysis , 1968 .

[17]  Barry Simon,et al.  The (φ4)2 field theory as a classical Ising model , 1973 .

[18]  Barry Simon,et al.  Correlation inequalities and the mass gap inP (φ)2 , 1973 .

[19]  G. A. Baker Some Rigorous Inequalities Satisfied by the Ferromagnetic Ising Model in a Magnetic Field , 1968 .

[20]  L. K. Runnels,et al.  Circle theorem for hard-core binary lattice gases , 1980 .

[21]  E. Hille Analytic Function Theory , 1961 .

[22]  B. Levin,et al.  Distribution of zeros of entire functions , 1964 .

[23]  Y. Sinai,et al.  Phase diagrams of classical lattice systems continuation , 1976 .

[24]  Robert B. Griffiths,et al.  Rigorous Results for Ising Ferromagnets of Arbitrary Spin , 1969 .

[25]  E. Hille,et al.  Analytic Function Theory. Volume II , 1973 .

[26]  C. Newman,et al.  Multicomponent field theories and classical rotators , 1975 .

[27]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[28]  C. Newman Fourier transforms with only real zeros , 1976 .

[29]  Taro Asano,et al.  Theorems on the Partition Functions of the Heisenberg Ferromagnets , 1970 .

[30]  Charles M. Newman,et al.  Zeros of the partition function for generalized ising systems , 1974 .

[31]  P. Sikkema Differential operators and differential equations of infinite order with constant coefficients : researches in connection with integral functions of finite order , 1955 .

[32]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[33]  Zeros of the partition function for higher‐order spin systems , 1974 .

[34]  Barry Simon,et al.  The P(φ)[2] Euclidean (quantum) field theory , 1974 .