C−H Carboxylation of Aromatic Compounds through CO2 Fixation

Abstract Carbon dioxide (CO2) represents the most abundant and accessible carbon source on Earth. Thus the ability to transform CO2 into valuable commodity chemicals through the construction of C−C bonds is an invaluable strategy. Carboxylic acids and derivatives, the main products obtained by carboxylation of carbon nucleophiles by reaction of CO2, have wide application in pharmaceuticals and advanced materials. Among the variety of carboxylation methods currently available, the direct carboxylation of C−H bonds with CO2 has attracted much attention owing to advantages from a step‐ and atom‐economical point of view. In particular, the prevalence of (hetero)aromatic carboxylic acids and derivatives among biologically active compounds has led to significant interest in the development of methods for their direct carboxylation from CO2. Herein, the latest achievements in the area of direct C−H carboxylation of (hetero)aromatic compounds with CO2 will be discussed.

[1]  L. Ackermann,et al.  C–H carboxylation of heteroarenes with ambient CO2 , 2016 .

[2]  R. Arad-Yellin,et al.  Improved preparation of the clathrate host compound tri-o-thymotide and related trisalicylide derivatives , 1991 .

[3]  O. Daugulis,et al.  Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide. , 2013, ACS catalysis.

[4]  Chang-Liang Sun,et al.  Transition-metal-catalyzed C-C bond formation through the fixation of carbon dioxide. , 2011, Chemical Society reviews.

[5]  Svetlana Markovic,et al.  Influence of Alkali Metal Cations upon the Kolbe-Schmitt Reaction Mechanism , 2006, J. Chem. Inf. Model..

[6]  L. Ackermann Transition-metal-catalyzed carboxylation of C-H bonds. , 2011, Angewandte Chemie.

[7]  Shuj Kobayashi,et al.  Lithium tert-Butoxide-Mediated Carboxylation Reactions of Unprotected Indoles and Pyrroles with Carbon Dioxide , 2015 .

[8]  K. Nemoto,et al.  Direct carboxylation of arenes and halobenzenes with CO2 by the combined use of AlBr3 and R3SiCl. , 2010, The Journal of organic chemistry.

[9]  J. Yoshida,et al.  Extremely fast gas/liquid reactions in flow microreactors: carboxylation of short-lived organolithiums. , 2014, Chemistry.

[10]  Ryoji Noyori,et al.  Homogeneous Hydrogenation of Carbon Dioxide , 1995 .

[11]  A. Slawin,et al.  A N-heterocyclic carbene gold hydroxide complex: a golden synthon. , 2010, Chemical communications.

[12]  H. Kolbe Ueber Synthese der Salicylsäure , 1860 .

[13]  Ruben Martin,et al.  Ni-catalyzed direct carboxylation of benzyl halides with CO2. , 2013, Journal of the American Chemical Society.

[14]  J. W. Barton,et al.  A STUDY OF THE KOLBE-SCHMITT REACTION. II. THE CARBONATION OF PHENOLS , 1954 .

[15]  K. Nemoto,et al.  Carboxylation of indoles and pyrroles with CO2 in the presence of dialkylaluminum halides , 2009 .

[16]  Xiao-hua Cai,et al.  Direct Carboxylative Reactions for the Transformation of Carbon Dioxide into Carboxylic Acids and Derivatives , 2013 .

[17]  S. M. Glueck,et al.  Regioselective Enzymatic Carboxylation of Phenols and Hydroxystyrene Derivatives , 2012, Organic letters.

[18]  T. Oikawa,et al.  Thermophilic, Reversible γ-Resorcylate Decarboxylase from Rhizobium sp. Strain MTP-10005: Purification, Molecular Characterization, and Expression , 2004, Journal of bacteriology.

[19]  L. Goossen,et al.  Synthesis of Propiolic Acids via Copper-Catalyzed Insertion of Carbon Dioxide into the CH Bond of Terminal Alkynes , 2010 .

[20]  Z. Hou,et al.  N-Heterocyclic carbene (NHC)–copper-catalysed transformations of carbon dioxide , 2013 .

[21]  K. Kudo,et al.  Carboxylation of Cesium 2-Naphthoate in the Alkali Metal Molten Salts of Carbonate and Formate with CO2 under High Pressure , 1995 .

[22]  I. Miyahara,et al.  Crystal Structures of Nonoxidative Zinc-dependent 2,6-Dihydroxybenzoate (γ-Resorcylate) Decarboxylase from Rhizobium sp. Strain MTP-10005* , 2006, Journal of Biological Chemistry.

[23]  T. Rovis,et al.  Organometallic chemistry: C-H carboxylation takes gold. , 2010, Nature chemistry.

[24]  L. Ackermann Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. , 2011, Chemical Reviews.

[25]  S. Nolan,et al.  Carboxylation of C-H bonds using N-heterocyclic carbene gold(I) complexes. , 2010, Journal of the American Chemical Society.

[26]  Magnus T. Johnson,et al.  Reactivity of NHC Au(I)-C sigma-bonds with electrophiles. An investigation of their possible involvement in catalytic C-C bond formation , 2011 .

[27]  Steven V Ley,et al.  The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. , 2011, Angewandte Chemie.

[28]  J. F. Norris,et al.  Intermediate Complexes in the Friedel and Crafts Reaction , 1940 .

[29]  J. Terao,et al.  Nickel-catalyzed carboxylation of aryl and vinyl chlorides employing carbon dioxide. , 2012, Journal of the American Chemical Society.

[30]  Z. Hou,et al.  Copper-catalyzed direct carboxylation of C-H bonds with carbon dioxide. , 2010, Angewandte Chemie.

[31]  L. Ackermann Übergangsmetallkatalysierte Carboxylierung von C‐H‐Bindungen , 2011 .

[32]  E. Beckman,et al.  Effect of Incubation of CO2 and Lewis Acid on the Generation of Toluic Acid from Toluene and CO2 , 2009 .

[33]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[34]  T. Hattori,et al.  EtAlCl2/2,6-Disubstituted Pyridine-Mediated Carboxylation of Alkenes with Carbon Dioxide. , 2016, Organic letters.

[35]  F. Glorius,et al.  Towards mild metal-catalyzed C-H bond activation. , 2011, Chemical Society reviews.

[36]  K. Sakanishi,et al.  Carboxylations of alkali metal phenoxides with carbon dioxide. , 2003, Organic & biomolecular chemistry.

[37]  D. Darensbourg,et al.  Insertion reactions of carbon dioxide with square-planar rhodium alkyl and aryl complexes , 1987 .

[38]  J. Takaya,et al.  Direct carboxylation of simple arenes with CO₂ through a rhodium-catalyzed C-H bond activation. , 2014, Chemical communications.

[39]  B. Rieger,et al.  Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? , 2011, Angewandte Chemie.

[40]  Geoffrey W. Coates,et al.  Diskrete Metallkatalysatoren zur Copolymerisation von CO2 mit Epoxiden: Entdeckung, Reaktivität, Optimierung, Mechanismus , 2004 .

[41]  S. Nolan,et al.  Carboxylation of N-H/C-H bonds using N-heterocyclic carbene copper(I) complexes. , 2010, Angewandte Chemie.

[42]  D. Cameron,et al.  THE KOLBE-SCHMITT REACTION. I. VARIATIONS IN THE CARBONATION OF p-CRESOL , 1950 .

[43]  Alan S. Lindsey,et al.  The Kolbe-Schmitt Reaction , 1957 .

[44]  Copper(I)-catalyzed carboxylation of aryl- and alkenylboronic esters. , 2008, Organic letters.

[45]  R. Schmitt,et al.  Beitrag zur Kenntniss der Kolbe'schen Salicylsäure Synthese , 1885 .

[46]  H. Inomata,et al.  Direct C-H carboxylation with carbon dioxide using 1,2,3-triazol-5-ylidene copper(I) complexes. , 2012, Organic letters.

[47]  P. Lograsso,et al.  Benzothiazoles as Rho-associated kinase (ROCK-II) inhibitors. , 2009, Bioorganic & medicinal chemistry letters.

[48]  C. S. Vaidyanathan,et al.  Identification of the active-site peptide of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus oryzae. , 1996, Biochimica et biophysica acta.

[49]  S. Miyano,et al.  Lewis Acid-Mediated Carboxylation of Fused Aromatic Compounds with Carbon Dioxide , 2002 .

[50]  Junichiro Yamaguchi,et al.  Funktionalisierung von C‐H‐Bindungen: neue Synthesemethoden für Naturstoffe und Pharmazeutika , 2012 .

[51]  K. Krobert,et al.  Synthesis and pharmacological properties of novel hydrophilic 5-HT4 receptor antagonists. , 2010, Bioorganic & medicinal chemistry.

[52]  K. Nemoto,et al.  Direct Carboxylation of Thiophenes and Benzothiophenes with the Aid of EtAlCl2 , 2012 .

[53]  K. Kirimura,et al.  Enzymatic Kolbe-Schmitt reaction to form salicylic acid from phenol: enzymatic characterization and gene identification of a novel enzyme, Trichosporon moniliiforme salicylic acid decarboxylase. , 2010, Biochemical and biophysical research communications.

[54]  J. Lawson,et al.  Mechanistic studies into amine-mediated electrophilic arene borylation and its application in MIDA boronate synthesis. , 2013, Journal of the American Chemical Society.

[55]  K. Nicholas,et al.  Palladium-Catalyzed Carboxylation of Allyl Stannanes , 1997 .

[56]  Arjan W. Kleij,et al.  Stereoselective synthesis with carbon dioxide , 2013 .

[57]  Junichiro Yamaguchi,et al.  C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. , 2012, Angewandte Chemie.

[58]  J. Joshi,et al.  Preparation of Pure Methyl Esters from Corresponding Alkali Metal Salts of Carboxylic Acids Using Carbon Dioxide and Methanol , 2012 .

[59]  Michel Dupuis,et al.  Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. , 2013, Chemical reviews.

[60]  T. Ikariya,et al.  Copper-catalyzed formal C - H carboxylation of aromatic compounds with carbon dioxide through arylaluminum intermediates. , 2015, Chemistry, an Asian journal.

[61]  M. Gaunt,et al.  Recent developments in natural product synthesis using metal-catalysed C-H bond functionalisation. , 2011, Chemical Society reviews.

[62]  B. Rieger,et al.  Umwandlung von Kohlendioxid mit Übergangsmetall‐Homogenkatalysatoren: eine molekulare Lösung für ein globales Problem? , 2011 .

[63]  Shuj Kobayashi,et al.  Base-mediated carboxylation of unprotected indole derivatives with carbon dioxide. , 2012, Organic Letters.

[64]  A. Kleij,et al.  Myth or reality? Fixation of carbon dioxide into complex organic matter under mild conditions. , 2011, ChemSusChem.

[65]  J. Takaya,et al.  Rhodium(I)-catalyzed direct carboxylation of arenes with CO2 via chelation-assisted C-H bond activation. , 2011, Journal of the American Chemical Society.

[66]  T. Ohwada,et al.  Regio- and chemoselective direct generation of functionalized aromatic aluminum compounds using aluminum ate base. , 2004, Journal of the American Chemical Society.

[67]  I. Larrosa,et al.  Carboxylation of Phenols with CO2 at Atmospheric Pressure. , 2016, Chemistry.

[68]  Yu Liu,et al.  Ni-catalyzed carboxylation of unactivated primary alkyl bromides and sulfonates with CO2. , 2014, Journal of the American Chemical Society.

[69]  N. Ahlsten,et al.  A silver-free system for the direct C–H auration of arenes and heteroarenes from gold chloride complexes , 2013 .

[70]  M. Kanan,et al.  Carbon dioxide utilization via carbonate-promoted C–H carboxylation , 2016, Nature.

[71]  R. T. Price,et al.  Arene C-H bond activation: reaction of (Me3P)3Rh(Me) with toluene to give (Me3P)3Rh(Ar) where Ar is o-, m- and p-tolyl , 1989 .

[72]  G. Friedrich,et al.  Zur Kenntnis der Carboxylierung von Phenolen , 1950 .

[73]  K. Shah,et al.  Synthesis and anticancer activity of 5-(3-indolyl)-1,3,4-thiadiazoles. , 2010, European journal of medicinal chemistry.

[74]  C. Yeung,et al.  Beyond Aresta's complex: Ni- and Pd-catalyzed organozinc coupling with CO2. , 2008, Journal of the American Chemical Society.

[75]  J. Sieler,et al.  Structure and Reactivity of Sodium Phenoxide ‐ Following the Course of the Kolbe‐Schmitt Reaction , 1997 .

[76]  D. Darensbourg,et al.  Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. , 2007, Chemical reviews.

[77]  David R. Moore,et al.  Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. , 2004, Angewandte Chemie.

[78]  J. Cason,et al.  Preparation of 2,3-Dihydroxybenzoic Acid , 1950 .

[79]  A. Slawin,et al.  Gold(I)-mediated C-H activation of arenes. , 2010, Journal of the American Chemical Society.

[80]  Xile Hu,et al.  Carbon dioxide as the C1 source for direct C-H functionalization of aromatic heterocycles. , 2010, Organic letters.

[81]  B. Yates,et al.  DFT Studies on the carboxylation of the C-H bond of heteroarenes by copper(I) complexes , 2011 .

[82]  N. Campillo,et al.  p‐Coumaric acid decarboxylase from Lactobacillus plantarum: Structural insights into the active site and decarboxylation catalytic mechanism , 2010, Proteins.

[83]  Ruben Martin,et al.  Palladium-catalyzed direct carboxylation of aryl bromides with carbon dioxide. , 2009, Journal of the American Chemical Society.

[84]  K. Nemoto,et al.  Me2AlCl-mediated carboxylation, ethoxycarbonylation, and carbamoylation of indoles , 2016 .

[85]  J. Bergman,et al.  Efficient synthesis of 2-chloro-, 2-bromo-, and 2-iodoindole , 1992 .

[86]  Svetlana Markovic,et al.  Mechanism of the Kolbe-Schmitt Reaction. Structure of the Intermediate Potassium Phenoxide-CO2 Complex , 2007, J. Chem. Inf. Model..

[87]  M. Mcpartlin,et al.  Mixed alkylamido aluminate as a kinetically controlled base. , 2008, Journal of the American Chemical Society.

[88]  C. Yeung,et al.  Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. , 2011, Chemical reviews.

[89]  Chang-Liang Sun,et al.  Direct C-H transformation via iron catalysis. , 2011, Chemical reviews.

[90]  Zhenmin Cheng,et al.  Synthesis of 3,6-dichloro salicylic acid by Kolbe–Schmitt reaction. 2. Proton transfer mechanism for the side reaction , 2014, Research on Chemical Intermediates.

[91]  J. Takaya,et al.  Rhodium(I)‐Catalyzed Carboxylation of Aryl‐ and Alkenylboronic Esters with CO2. , 2006 .

[92]  Tetsuaki Fujihara,et al.  Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts. , 2012, Chemical communications.

[93]  M. Aresta Carbon dioxide as chemical feedstock , 2010 .

[94]  J. Baygents,et al.  Production of Acids and Bases for Ion Exchange Regeneration from Dilute Salt Solutions Using Bipolar Membrane Electrodialysis , 2015 .

[95]  K. Nemoto,et al.  Beneficial Effect of TMSCl in the Lewis Acid-mediated Carboxylation of Aromatic Compounds with Carbon Dioxide , 2006 .

[96]  Takayuki Iijima,et al.  Efficient regioselective carboxylation of phenol to salicylic acid with supercritical CO2 in the presence of aluminium bromide , 2008 .

[97]  Golam Rasul,et al.  Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al(2)Cl(6)/Al system. , 2002, Journal of the American Chemical Society.

[98]  T. Hambley,et al.  Synthesis and characterization of Rh(P(CH3)3)2(CO)CH3 and Rh(P(CH3)3)2(CO)Ph , 1993 .

[99]  Takeshi Ohishi,et al.  Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. , 2008, Angewandte Chemie.