Konformationsdesign offenkettiger Verbindungen

Am Ubergang zum 21. Jahrhundert befasst sich die Chemie zunehmend mit der Funktion, die Molekulen als Wirkstoffen, Rezeptoren oder – im Molekulverband – als Materialien zukommt. Die Tauglichkeit einer Verbindung fur eine molekulare Funktion konnen wir mit den Begriffen der Konstitution und Konfiguration allein nicht ausreichend beschreiben. Eine entscheidende Bedeutung kommt hier zusatzlich der Konformation der Einzelmolekule als Mittler zwischen molekularer Konstitution und molekularer Funktion zu. Formulierungen wie „Aktivkonformation” oder „kompetente Konformation” lassen dies anklingen. Der Chemiker muss ein Verstandnis dafur entwickeln, wie ein flexibles Molekul die fur die jeweilige Funktion optimale Konformation (raumliche Gestalt) einnimmt und wie man dies beeinflussen kann. Am Anfang derartiger Uberlegungen zu einem Konformationsdesign steht die Frage, wie es denn die Natur im Zuge der Evolution ihrer Funktionsmolekule erreicht hat, dass flexible Verbindungen die fur die jeweilige Funktion optimale Konformation einnehmen. Wir berichten in diesem Aufsatz, wie wir zu einem ansatzweisen Verstandnis des „Konformationsdesigns” der Natur im Bereich der Polyketid-Naturstoffe gelangt sind, wie wir diese Erkenntnisse zu einem Konformationsdesign offenkettiger Molekule weiterentwickelt haben und welche Anwendungsmoglichkeiten fur diese Erkenntnisse sich jetzt schon abzeichnen.

[1]  P. Corradini,et al.  Conformation of linear chains and their mode of packing in the crystal state , 1959 .

[2]  K. Umesono,et al.  Three-dimensional structure-function relationship of vitamin D: side chain location and various activities. , 1999, Bioorganic & medicinal chemistry letters.

[3]  H. Hosoya,et al.  Investigation of intramolecular interactions in n-alkanes. Cooperative energy increments associated with GG and GTG' [G = gauche, T = trans] sequences , 1991 .

[4]  M. González-Sierra,et al.  Semiempirical calculation of 13C nuclear magnetic resonance chemical shifts of acyclic hydrocarbons. Application to the stereochemical analysis of steroidal side chains , 1988 .

[5]  R. W. Hoffmann,et al.  Conformation preferences in 2,4,6-trisubstituted heptanes☆ , 1999 .

[6]  Gerhard Hessler,et al.  Areβ-Turn Mimetics Mimics ofβ-Turns? , 2000 .

[7]  G. Natta,et al.  Crystalline modification of syndiotactic polypropylene having a zig-zag chain conformation , 1964 .

[8]  P. Andrews,et al.  β-turn topography , 1993 .

[9]  W. C. Still,et al.  Podand sulfones. Enantioselective receptors for peptidic ammonium ions , 1991 .

[10]  R. W. Hoffmann,et al.  Conformational analysis of (R,S)-4-amido-2,4-dimethyl-butyric acid derivatives , 1999 .

[11]  R. Aplin,et al.  An octameric carbopeptoid; secondary structure in octameric and tetrameric 5-aminomethyl-tetrahydrofuran-2-carboxylates , 1999 .

[12]  W. C. Still,et al.  Enhancing the binding properties of a conformationally rigid podand ionophore , 1992 .

[13]  H. DeLuca,et al.  Conformationally restricted analogs of 1 alpha, 25-dihydroxyvitamin D3 and its 20-epimer: compounds for study of the three-dimensional structure of vitamin D responsible for binding to the receptor. , 1996, Journal of medicinal chemistry.

[14]  N. D. Epiotis,et al.  Directional effects of .sigma. conjugation on geometrical isomerism , 1977 .

[15]  A. Zeeck,et al.  Chemistry of unusual macrolides. 1. Preparation of the aglycons of concanamycin A and elaiophylin , 1993 .

[16]  I. Karle,et al.  Synthesis and Characterization of trans-2-Aminocyclohexanecarboxylic Acid Oligomers: An Unnatural Helical Secondary Structure and Implications for β-Peptide Tertiary Structure , 1999 .

[17]  F. Johnson Allylic strain in six-membered rings , 1968 .

[18]  R. W. Hoffmann,et al.  Heptan-1,3,5,7-tetrol-diacetonides, flexible backbone segments with a marked conformational preference , 1996 .

[19]  Z. Goren,et al.  Axial-equatorial stability reversal in all-trans-polyalkylcyclohexanes , 1990 .

[20]  P. Dionne,et al.  Mechanism of the gauche conformational effect in 3-halogenated 1,5-benzodioxepins , 1987 .

[21]  J. Gante Peptidmimetica – maßgeschneiderte Enzyminhibitoren , 1994 .

[22]  R. Hoffmann Stereoselektive Synthese von Bausteinen mit drei aufeinanderfolgenden stereogenen Zentren, wichtigen Vorstufen für polyketide Naturstoffe , 1987 .

[23]  Horst Kessler,et al.  Conformation and Biological Activity of Cyclic Peptides , 1982 .

[24]  R. W. Hoffmann,et al.  syn/anti-Configurational Assignment of sec-Butalcarbinols Based on 13C-NMR Spectra , 1990 .

[25]  Dale L. Boger,et al.  Bleomycin: Untersuchungen zu Synthese und Wirkungsmechanismus , 1999 .

[26]  F. Weinhold,et al.  Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds , 1979 .

[27]  S. Berger,et al.  Application of a Gradient Enhanced Measurement for Carbon-Carbon Coupling Constants (GRECCO) to a Conformational Study of Geraniol and (E,E)-Farnesol , 1995 .

[28]  B. M. Jimenez,et al.  IBTM-Containing Gramicidin S Analogues: Evidence for IBTM as a Suitable Type II‘ β-Turn Mimetic1,2 , 1997 .

[29]  W. C. Still,et al.  An 18-crown-6 derivative with only one conformation , 1993 .

[30]  Yoshinori Yamamoto,et al.  A conformationally rigid acyclic molecule , 1990 .

[31]  R. W. Hoffmann,et al.  Konformationsdesign eines voll flexiblen βII-Hairpin-Analogons , 1997 .

[32]  P. Balaram,et al.  Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system , 1981 .

[33]  S. Durell,et al.  Formation of Short, Stable Helices in Aqueous Solution by β-Amino Acid Hexamers , 1999 .

[34]  Davidr . Evans,et al.  Synthetic Studies in the Lysocellin Family of Polyether Antibiotics. The Total Synthesis of Ferensimycin B , 1991 .

[35]  H. Juteau,et al.  Enantioselective Cyclopropanation of Allylic Alcohols with Dioxaborolane Ligands: Scope and Synthetic Applications , 1998 .

[36]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[37]  A. Otter,et al.  Thermodynamic and Conformational Implications of Glycosidic Rotamers Preorganized for Binding , 1998 .

[38]  G. Magnusson,et al.  RESTRICTION OF CONFORMATION IN GALABIOSIDES VIA AN O6-O2'-METHYLENE BRIDGE , 1997 .

[39]  W. Tincher,et al.  NMR investigation of the structures of 2,4-disubstituted pentanes , 1965 .

[40]  R. W. Hoffmann,et al.  Calculation of 13C NMR chemical shifts and coupling constants for the analysis of conformer populations and relative configuration in flexible molecules , 1997 .

[41]  W. C. Still,et al.  Two-point binding in podand acetals favors enantioselective complexation. , 1992 .

[42]  H. Senderowitz,et al.  New supramolecular host systems. 2. 1,3,5,7-tetraoxadecalin, 1,2-dimethoxyethane and the Gauche effect reappraised. Theory vs. experiment. , 1994 .

[43]  D. Seebach,et al.  Faltblätter und Schleifen von β‐Peptiden mit proteinogenen Seitenketten , 1999 .

[44]  J B McAlpine,et al.  Modular organization of genes required for complex polyketide biosynthesis. , 1991, Science.

[45]  R. W. Hoffmann,et al.  Flexible molecules with defined shape, II. Control of n‐heptane conformer populations by methyl substitution or ring annulation , 1992 .

[46]  R. W. Hoffmann,et al.  Flexible Moleküle mit definierter Gestalt — Konformationsdesign , 1992 .

[47]  K. Harms,et al.  Oligo‐THF Peptides: Synthesis, Membrane Insertion, and Studies of Ion Channel Activity , 1996 .

[48]  B. Jaun,et al.  Pleated Sheets and Turns of β-Peptides with Proteinogenic Side Chains. , 1999, Angewandte Chemie.

[49]  R. W. Hoffmann,et al.  Flexible Molecules with Defined Shape—Conformational Design , 1992 .

[50]  R. W. Hoffmann,et al.  Conformation Design of Hydrocarbon Backbones: A Modular Approach , 1998 .

[51]  B. Jaun,et al.  "Mixed" β-peptides. A unique helical secondary structure in solution. Preliminary communication , 1997 .

[52]  A. Slawin,et al.  A conformational study of bafilomycin A1 by x-ray crystallography and nmr techniques , 1987 .

[53]  P. D. Clercq,et al.  On the use of volume maps in the conformational analysis of vitamin D analogs , 1998 .

[54]  D. Seebach,et al.  Oligomers ofβ2- and ofβ3-Homoproline: What are the Secondary Structures ofβ-Peptides Lacking H-Bonds? , 1999 .

[55]  A. Tonelli The Conformational Connection Between the Microstructures of Polymers and Their NMR Spectra , 1997 .

[56]  K. Albert,et al.  The structure of the bafilomycins, a new group of macrolide antibiotics , 1983 .

[57]  B. Jaun,et al.  γ‐Peptides Forming More Stable Secondary Structures than α‐Peptides: Synthesis and helical NMR‐solution structure of the γ‐hexapeptide analog of H‐(Val‐Ala‐Leu)2‐OH , 1998 .

[58]  A. Tonelli,et al.  Calculated and Measured13C NMR Chemical Shifts of the 2,4,6-Trichloroheptanes and Their Implications for the13C NMR Spectra of Poly(vinyl chloride) , 1979 .

[59]  R. W. Hoffmann Diastereogenic Addition of Crotylmetal Compounds to Aldehydes , 1982 .

[60]  H. Robertson,et al.  Molecular Structure of 3,3-Diethylpentane (Tetraethylmethane) in the Gas Phase as Determined by Electron Diffraction and ab initio Calculations , 1999 .

[61]  P. McMahon Contributions to conformational energy from interactions between nonbonded atoms and groups. Part 2.—Meso and racemic 2,4-disubstituted pentanes , 1965 .

[62]  W. C. Still,et al.  A podand analog of 18-crown-6 , 1993 .

[63]  G. Schulte,et al.  Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta [Erratum to document cited in CA113(9):75187b] , 1991 .

[64]  A. Eschenmoser Vitamin B12: Experimente zur Frage nach dem Ursprung seiner molekularen Struktur† , 1988 .

[65]  S. Michnick,et al.  Design of Secondary Structures in Unnatural Peptides: Stable Helical γ-Tetra-, Hexa-, and Octapeptides and Consequences of α-Substitution , 1998 .

[66]  R. W. Hoffmann,et al.  Assignment of Relative Configuration to Acyclic Compounds Based on (13)C NMR Shifts. A Density Functional and Molecular Mechanics Study. , 1996, The Journal of organic chemistry.

[67]  G. Müller,et al.  Sind -Schleifenmimetika Mimetika fr -Schleifen? , 2000 .

[68]  A. Eschenmoser Vitamin B12: Experiments Concerning the Origin of Its Molecular Structure , 1988 .

[69]  D. Seebach,et al.  Synthesis, Crystal Structures, and Modelling ofβ-Oligopeptides Consisting of 1-(Aminomethyl)cyclopropanecarboxylic Acid: Ribbon-Type Arrangement of Eight-Membered H-Bonded Rings , 1999 .

[70]  R. Hoffman,et al.  Stereochemistry and Conformational Anomalies of 1,2,3- and 1,2,3,4-Polycyclohexylcyclohexanes , 1996 .

[71]  Y. Fujiwara,et al.  NMR conformational analysis of chain molecules using the local interaction model. I. 2,4,-disubstituted pentanes , 1973 .

[72]  W. C. Still,et al.  Podand ionophores with dialkoxy conformational locks , 1993 .

[73]  R. W. Hoffmann,et al.  threo/erythro‐Assignment of 1,3‐diol derivatives based on 13C NMR spectra , 1985 .

[74]  T. Shimanouchi,et al.  C–Cl Stretching Frequencies and the Molecular Structure of Polyvinyl Chloride , 1959 .

[75]  K. Harms,et al.  Oligo‐THF‐Peptide: Synthese, Membraneinbau und Untersuchungen zur Ionenkanalaktivität , 1996 .

[76]  R. W. Hoffmann Stereoselective Syntheses of Building Blocks with Three Consecutive Stereogenic Centers: Important Precursors of Polyketide Natural Products [New Synthetic Methods (68)] , 1987 .

[77]  H. Hauser,et al.  β‐Peptides as Inhibitors of Small‐Intestinal Cholesterol and Fat Absorption , 1999 .

[78]  F. Cañada,et al.  Bovine Heart Galectin-1 Selects a Unique (Syn) Conformation of C-Lactose, a Flexible Lactose Analogue , 1999 .

[79]  R. W. Hoffmann,et al.  Stereoselective synthesis of alcohols. XIX: The sense of asymmetric induction on addition to α-chiral aldehydes , 1985 .

[80]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[81]  A. O'sullivan,et al.  Selective Derivatization of the Ionophore X-206 at C(22) Maintaining Potassium Binding , 1998 .

[82]  N. T. McDevitt,et al.  Characteristic group frequencies of bromo and iodoalkanes in the cesium bromide region , 1964 .

[83]  Joel P. Schneider,et al.  Templates That Induce .alpha.-Helical, .beta.-Sheet, and Loop Conformations , 1995 .

[84]  Jeremy P. Scott,et al.  Polyketide library synthesis: Conformational control in extended polypropionates , 1997 .

[85]  A. Müller,et al.  [Mo4(NO)4(S2)6O]2−, ein neuartiger hochsymmetrischer Mehrkernkomplex mit zwei “henkelförmig” sowie vier “dachförmig” koordinierten S 22−‐Brücken‐Liganden an einem tetragonalen Mo4‐Disphenoid , 1982 .

[86]  W. Clark Still,et al.  Enantioselective complexation of organic ammonium ions by simple tetracyclic podand ionophores , 1992 .

[87]  R. W. Hoffmann,et al.  Allylic 1,3-strain as a controlling factor in stereoselective transformations , 1989 .

[88]  G. Natta Stereospezifische Katalysen und isotaktische Polymere , 1956 .

[89]  T. Fäcke,et al.  Gradient‐enhanced SELINCOR for selective excitation in a 13C‐resolved COSY experiment , 1995 .

[90]  D. Bundle,et al.  CONSTRAINED H-TYPE 2 BLOOD GROUP TRISACCHARIDE SYNTHESIZED IN A BIOACTIVE CONFORMATION VIA INTRAMOLECULAR GLYCOSYLATION , 1999 .

[91]  J. Gante,et al.  Peptidomimetics—Tailored Enzyme Inhibitors† , 1994 .

[92]  I. Paterson,et al.  Substrate-Controlled Aldol Reactions of Chiral Ethyl Ketones: Application to the Total Synthesis of Oleandomycin , 1994 .

[93]  D. Boger,et al.  Bleomycin: Synthetic and Mechanistic Studies. , 1999, Angewandte Chemie.

[94]  Paul J. Flory,et al.  Stereochemical equilibrium in 2,4,6-trichloro-n-heptane with applications to poly(vinyl chloride) , 1973 .

[95]  P. Leadlay,et al.  An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea , 1990, Nature.

[96]  W. C. Still,et al.  Stereochemical studies of lasalocid epimers. Ion-driven epimerizations. , 1987 .

[97]  S. Matsunaga,et al.  Bioactive marine metabolites. 24. Isolation and structure elucidation of calyculins B, C, and D, novel antitumor metabolites, from the marine sponge Discodermia calyx , 1988 .

[98]  M. Martín-Pastor,et al.  Experimental Evidence of Conformational Differences between C-Glycosides and O-Glycosides in Solution and in the Protein-Bound State: The C-Lactose/O-Lactose Case , 1996 .

[99]  T. King,et al.  The structure and absolute stereochemistry of zincophorin (antibiotic M144255): a monobasic carboxylic acid ionophore having a remarkable specificity for divalent cations. , 1984, The Journal of antibiotics.

[100]  W. C. Still,et al.  Free Energy Calculations in Molecular Design: Predictions by Theory and Reality by Experiment with Enantioselective Podand Ionophores , 1994 .

[101]  John A. Katzenellenbogen,et al.  Design, Synthesis, and Conformational Analysis of a Proposed Type I β-Turn Mimic , 1998 .

[102]  G. Folkers,et al.  Temperature-Dependent NMR and CD Spectra ofβ-Peptides: On the Thermal Stability ofβ-Peptide Helices - Is the Folding Process ofβ-Peptides Non-cooperative? , 1999 .

[103]  S. Hanessian,et al.  Synthesis and folding preferences of γ-amino acid oligopeptides: stereochemical control in the formation of a reverse turn and a helix , 1999 .

[104]  S. Rychnovsky,et al.  Concise total synthesis of (+)-(9S)-dihydroerythronolide A , 1987 .

[105]  A. Guy Orpen,et al.  The conformational effects of quaternary centres , 1990 .

[106]  B. Schneider,et al.  On the structure and properties of vinyl polymers and their models. I. NMR spectra of d,l - and meso -forms of 2,4-dichloropentane and 2,4-pentanedioldiacetate: AA'XX' and ABX 2 systems with weak coupling , 1964 .

[107]  G. Helmchen,et al.  Enantioselective Allylic Substitution of Cyclic Substrates by Catalysis with Palladium Complexes of P,N-Chelate Ligands with a Cymantrene Unit. , 1998, Angewandte Chemie.

[108]  H. Kinashi,et al.  Alkaline degradation products of concanamycin a , 1981 .

[109]  S. Schreiber,et al.  Synthesis and analysis of 506BD, a high-affinity ligand for the immunophilin FKBP , 1991 .

[110]  B. W. Gung,et al.  Characterization of a Water-Soluble, Helical β-Peptide , 1999 .

[111]  J. Donaubauer,et al.  Synthesis of the proposed penultimate biosynthetic triene intermediate of monensin A , 1986 .

[112]  N. Tomioka,et al.  Man-designed bleomycins : significance of the binding sites as enzyme models and of the stereochemistry of the linker moiety , 1992 .

[113]  Paul W Smith,et al.  The effect of substitution and stereochemistry on ion binding in the polyether ionophore monensin , 1988 .

[114]  R. W. Hoffmann,et al.  Conformation Design of a Fully FlexibleβII- Hairpin Analogue , 1997 .

[115]  G. Schulte,et al.  Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta , 1990 .

[116]  Y. Kishi,et al.  Further studies on chromium(II)-mediated homoallylic alcohol syntheses , 1982 .

[117]  R. Mccullough,et al.  Contributions to conformational energy from interactions between nonbonded atoms and groups. Part 1.—General formulation , 1964 .

[118]  B. Tinant,et al.  Factors affecting ease of ring formation. The effect of anchoring substitution on the rate of an intramolecular diels-alder reaction with furan-diene , 1988 .

[119]  W. C. Still,et al.  Enantioselective complexation with a conformationally homogeneous C2 podand ionophore , 1989 .