Linear Complementarity as a General Solution Method to Combinatorial Problems

This paper shows how many types of combinatorial problems can be embedded in continuous space and solved as nonconvex optimization problems. If the objective function and the constraints are linear, problems of this kind can be formulated as linear complementarity problems. An algorithm is presented to solve this type of problem and indicate its convergence properties. Computational comparisons are carried out using general solution codes.

[1]  Alexander H. G. Rinnooy Kan,et al.  An introduction to the analysis of approximation algorithms , 1986, Discret. Appl. Math..

[2]  Giacomo Patrizi,et al.  The equivalence of an LCP to a parametric linear program with a scalar parameter , 1991 .

[3]  G Kendall Maurice,et al.  The Advanced Theory Of Statistics Vol-i , 1943 .

[4]  J. Dongarra Performance of various computers using standard linear equations software , 1990, CARN.

[5]  R. T. Wong,et al.  `Multidimensional' extensions and a nested dual approach for the m-median problem , 1985 .

[6]  Katta G. Murty,et al.  On the number of solutions to the complementarity problem and spanning properties of complementary cones , 1972 .

[7]  Alexander Schrijver,et al.  Polyhedral proof methods in combinatorial optimization , 1986, Discret. Appl. Math..

[8]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[9]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[10]  Michael J. Todd,et al.  Solving combinatorial optimization problems using Karmarkar's algorithm , 1992, Math. Program..

[11]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[12]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[13]  Franz Josef Radermacher,et al.  Running time experiments on some algorithms for solving propositional satisfiability problems , 1995, Ann. Oper. Res..

[14]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[15]  Haskell B. Curry,et al.  Foundations of Mathematical Logic , 1964 .

[16]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[17]  Thomas D. Sandry,et al.  Introductory Statistics With R , 2003, Technometrics.