A combined OWA-DEA method for dispatching rule selection

[1]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[2]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[3]  Jwm Will Bertrand,et al.  A comparison of due-date selection rules , 1981 .

[4]  Deng Ju-Long,et al.  Control problems of grey systems , 1982 .

[5]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[6]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[7]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[8]  Thomas E. Morton,et al.  Heuristic scheduling systems : with applications to production systems and project management , 1993 .

[9]  C. Rajendran Heuristic algorithm for scheduling in a flowshop to minimize total flowtime , 1993 .

[10]  Yeong-Dae Kim,et al.  Heuristics for Flowshop Scheduling Problems Minimizing Mean Tardiness , 1993 .

[11]  Ching-Lai Hwang,et al.  Multiple attribute decision making : an introduction , 1995 .

[12]  Yih-Long Chang,et al.  Ranking Dispatching Rules by Data Envelopment Analysis in a Job Shop Environment , 1996 .

[13]  S. Barman The impact of priority rule combinations on lateness and tardiness , 1998 .

[14]  Yeong-Dae Kim,et al.  A real-time scheduling mechanism for a flexible manufacturing system: Using simulation and dispatching rules , 1998 .

[15]  Chandrasekharan Rajendran,et al.  A comparative study of dispatching rules in dynamic flowshops and jobshops , 1999, Eur. J. Oper. Res..

[16]  Marcello Braglia,et al.  Data envelopment analysis for dispatching rule selection , 1999 .

[17]  Robert Fullér,et al.  On Obtaining Minimal Variability Owa Operator Weights , 2002, Fuzzy Sets Syst..

[18]  Cerry M. Klein,et al.  A new rule for minimizing the number of tardy jobs in dynamic flow shops , 2004, Eur. J. Oper. Res..

[19]  Zeshui Xu,et al.  Alternative form of Dempster's rule for binary variables: Research Articles , 2005 .

[20]  Ying-Ming Wang,et al.  A minimax disparity approach for obtaining OWA operator weights , 2005, Inf. Sci..

[21]  Zeshui Xu,et al.  An overview of methods for determining OWA weights , 2005, Int. J. Intell. Syst..

[22]  David B. Pratt,et al.  The modified critical ratio: towards sequencing with a continuous decision domain , 2005 .

[23]  Li-Chen Fu,et al.  Using dispatching rules for job shop scheduling with due date-based objectives , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[24]  Zhongsheng Hua,et al.  Aggregating preference rankings using OWA operator weights , 2007, Inf. Sci..

[25]  Taho Yang,et al.  Using simulation and multi-criteria methods to provide robust solutions to dispatching problems in a flow shop with multiple processors , 2008, Math. Comput. Simul..

[26]  Taho Yang,et al.  The use of grey relational analysis in solving multiple attribute decision-making problems , 2008, Comput. Ind. Eng..

[27]  Ronald R. Yager,et al.  On the dispersion measure of OWA operators , 2009, Inf. Sci..

[28]  Ali Emrouznejad,et al.  Improving minimax disparity model to determine the OWA operator weights , 2010, Inf. Sci..

[29]  Ali Emrouznejad,et al.  Parametric aggregation in ordered weighted averaging , 2011, Int. J. Approx. Reason..

[30]  Ahmed El-Bouri A cooperative dispatching approach for minimizing mean tardiness in a dynamic flowshop , 2012, Comput. Oper. Res..

[31]  Xinwang Liu,et al.  Models to determine parameterized ordered weighted averaging operators using optimization criteria , 2012, Inf. Sci..

[32]  Joe Zhu,et al.  Data envelopment analysis: Prior to choosing a model , 2014 .