Provenance for Non-Experts
暂无分享,去创建一个
[1] Melanie Herschel,et al. Immutably answering Why-Not questions for equivalent conjunctive queries , 2015, Ingénierie des Systèmes d Inf..
[2] Chris Brew,et al. TR Discover: A Natural Language Interface for Querying and Analyzing Interlinked Datasets , 2015, International Semantic Web Conference.
[3] Oren Etzioni,et al. Towards a theory of natural language interfaces to databases , 2003, IUI '03.
[4] Daniel Deutch,et al. Learning Queries from Examples and Their Explanations , 2016, ArXiv.
[5] Jakub Závodný,et al. Factorised representations of query results: size bounds and readability , 2012, ICDT '12.
[6] M. Emms. Variants of Tree Similarity in a Question Answering Task , 2006 .
[7] 编程语言. Query by Example , 2010, Encyclopedia of Database Systems.
[8] Adriane Chapman,et al. Why Not? , 1965, SIGMOD Conference.
[9] Fotis Psallidas,et al. S4: Top-k Spreadsheet-Style Search for Query Discovery , 2015, SIGMOD Conference.
[10] Jennifer Widom,et al. Synthesizing view definitions from data , 2010, ICDT '10.
[11] Sanjeev Khanna,et al. Why and Where: A Characterization of Data Provenance , 2001, ICDT.
[12] Val Tannen,et al. Querying data provenance , 2010, SIGMOD Conference.
[13] Melanie Herschel,et al. Efficient Computation of Polynomial Explanations of Why-Not Questions , 2015, CIKM.
[14] Abraham Silberschatz,et al. Playful Query Specification with DataPlay , 2012, Proc. VLDB Endow..
[15] Yong Zhao,et al. Chimera: a virtual data system for representing, querying, and automating data derivation , 2002, Proceedings 14th International Conference on Scientific and Statistical Database Management.
[16] Srinivasan Parthasarathy,et al. Query by output , 2009, SIGMOD Conference.
[17] Tova Milo,et al. A Natural Language Interface for Querying General and Individual Knowledge , 2015, Proc. VLDB Endow..
[18] Daniel Deutch,et al. Provenance for Natural Language Queries , 2017, Proc. VLDB Endow..
[19] Melanie Herschel. A Hybrid Approach to Answering Why-Not Questions on Relational Query Results , 2015, JDIQ.
[20] Dan Suciu,et al. The Complexity of Causality and Responsibility for Query Answers and non-Answers , 2010, Proc. VLDB Endow..
[21] Daniel Deutch,et al. Selective Provenance for Datalog Programs Using Top-K Queries , 2015, Proc. VLDB Endow..
[22] Dan Suciu,et al. Causality in Databases , 2010, IEEE Data Eng. Bull..
[23] Christopher Ré,et al. Approximate lineage for probabilistic databases , 2008, Proc. VLDB Endow..
[24] Samuel Madden,et al. Scorpion: Explaining Away Outliers in Aggregate Queries , 2013, Proc. VLDB Endow..
[25] Jakub Závodný,et al. FDB: A Query Engine for Factorised Relational Databases , 2012, Proc. VLDB Endow..
[26] Fei Li,et al. Constructing an Interactive Natural Language Interface for Relational Databases , 2014, Proc. VLDB Endow..
[27] Martin L. Kersten,et al. Meet Charles, big data query advisor , 2013, CIDR.
[28] Joan Bruna,et al. Intriguing properties of neural networks , 2013, ICLR.
[29] Daniel Deutch,et al. Approximated Summarization of Data Provenance , 2015, CIKM.
[30] Val Tannen,et al. Provenance semirings , 2007, PODS.
[31] Melanie Herschel,et al. Query-Based Why-Not Provenance with NedExplain , 2014, EDBT.
[32] Bart Baesens,et al. Using Rule Extraction to Improve the Comprehensibility of Predictive Models , 2006 .
[33] Adriane Chapman,et al. Efficient provenance storage , 2008, SIGMOD Conference.
[34] Yogesh L. Simmhan,et al. Karma2: Provenance Management for Data-Driven Workflows , 2008, Int. J. Web Serv. Res..
[35] Dietmar F. Rösner,et al. NAUDA: a cooperative natural language interface to relational databases , 1993, SIGMOD '93.
[36] Angela Bonifati,et al. Interactive Inference of Join Queries , 2014, EDBT.
[37] Surajit Chaudhuri,et al. Discovering queries based on example tuples , 2014, SIGMOD Conference.
[38] Carlos Guestrin,et al. "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.
[39] Themis Palpanas,et al. Exemplar Queries: Give me an Example of What You Need , 2014, Proc. VLDB Endow..
[40] Meihui Zhang,et al. Reverse engineering complex join queries , 2013, SIGMOD '13.
[41] Chris Brew,et al. Natural Language Question Answering and Analytics for Diverse and Interlinked Datasets , 2015, HLT-NAACL.
[42] Jonathon Shlens,et al. Explaining and Harnessing Adversarial Examples , 2014, ICLR.