Galois orbits of TQFTs: symmetries and unitarity

We study Galois actions on 2+1D topological quantum field theories (TQFTs), characterizing their interplay with theory factorization, gauging, the structure of gapped boundaries and dualities, 0-form symmetries, 1-form symmetries, and 2-groups. In order to gain a better physical understanding of Galois actions, we prove sufficient conditions for the preservation of unitarity. We then map out the Galois orbits of various classes of unitary TQFTs. The simplest such orbits are trivial (e.g., as in various theories of physical interest like the Toric Code, Double Semion, and 3-Fermion Model), and we refer to such theories as unitary “Galois fixed point TQFTs”. Starting from these fixed point theories, we study conditions for preservation of Galois invariance under gauging 0-form and 1-form symmetries (as well as under more general anyon condensation). Assuming a conjecture in the literature, we prove that all unitary Galois fixed point TQFTs can be engineered by gauging 0-form symmetries of theories built from Deligne products of certain abelian TQFTs.

[1]  Paul Gustafson,et al.  Integral metaplectic modular categories , 2019, Journal of Knot Theory and Its Ramifications.

[3]  J. Goeree,et al.  Markov traces and II1 factors in conformal field theory , 1991 .

[4]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[5]  D. Naidu,et al.  Classification of Integral Modular Categories of Frobenius–Perron Dimension pq 4 and p 2 q 2 , 2013, Canadian Mathematical Bulletin.

[6]  P. Schauenburg,et al.  Modular categories are not determined by their modular data , 2017, Letters in Mathematical Physics.

[7]  S. Ng,et al.  Congruence property in conformal field theory , 2012, 1201.6644.

[8]  S. Natale The core of a weakly group-theoretical braided fusion category , 2017, 1704.03523.

[9]  D. Naidu,et al.  Centers of graded fusion categories , 2009, 0905.3117.

[10]  A. Kapustin,et al.  Topological boundary conditions in abelian Chern-Simons theory , 2010, 1008.0654.

[11]  Sung Kim,et al.  Zesting produces modular isotopes and explains their topological invariants , 2021 .

[12]  Classification and construction of unitary topological field theories in two dimensions , 1993, hep-th/9308043.

[13]  R. Brauer On the Representation of a Group of Order g in the Field of the g-Th Roots of Unity , 1945 .

[14]  Yuji Tachikawa,et al.  A study of time reversal symmetry of abelian anyons , 2018, Journal of High Energy Physics.

[15]  Chien-Hung Lin,et al.  Generalized string-net models: A thorough exposition , 2021 .

[16]  M. Buican,et al.  Non-abelian anyons and some cousins of the Arad–Herzog conjecture , 2020, Journal of Physics A: Mathematical and Theoretical.

[17]  J. Gomis,et al.  Symmetries of abelian Chern-Simons theories and arithmetic , 2019, Journal of High Energy Physics.

[18]  On fusion categories , 2002, math/0203060.

[19]  P. Schauenburg,et al.  Morita equivalence of pointed fusion categories of small rank , 2017, 1708.06538.

[20]  C. Galindo On Braided and Ribbon Unitary Fusion Categories , 2012, Canadian Mathematical Bulletin.

[21]  Michael Mueger On the Structure of Modular Categories , 2002, math/0201017.

[22]  Matthew B. Hastings,et al.  Galois Conjugates of Topological Phases , 2011, 1106.3267.

[23]  G. Camilo,et al.  Circuit complexity of knot states in Chern-Simons theory , 2019, Journal of High Energy Physics.

[24]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[25]  M. Freedman,et al.  Large quantum Fourier transforms are never exactly realized by braiding conformal blocks , 2006, cond-mat/0609411.

[26]  Shawn X. Cui,et al.  On Gauging Symmetry of Modular Categories , 2015, 1510.03475.

[27]  J. Loxton,et al.  A note on the characterization of CM-fields , 1978, Journal of the Australian Mathematical Society.

[28]  Eric C. Rowell,et al.  Braided Zesting and Its Applications , 2020, Communications in Mathematical Physics.

[29]  D. Naidu,et al.  Lagrangian Subcategories and Braided Tensor Equivalences of Twisted Quantum Doubles of Finite Groups , 2007, 0705.0665.

[30]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[31]  Zhenghan Wang,et al.  Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter , 2017, Communications in Mathematical Physics.

[32]  X. Wen,et al.  Classification of (3+1)D Bosonic Topological Orders: The Case When Pointlike Excitations Are All Bosons , 2017, Physical Review X.

[33]  Ho Tat Lam,et al.  Comments on one-form global symmetries and their gauging in 3d and 4d , 2018, SciPost Physics.

[34]  S. Natale,et al.  Graphs attached to simple Frobenius-Perron dimensions of an integral fusion category , 2014, 1403.1247.

[35]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[36]  C. Galindo,et al.  Generalized and Quasi-Localizations of Braid Group Representations , 2011, 1105.5048.

[37]  From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.

[38]  D. Naidu Categorical Morita Equivalence for Group-Theoretical Categories , 2006, math/0605530.

[39]  V. Ostrik,et al.  The Witt group of non-degenerate braided fusion categories , 2010, 1009.2117.

[40]  Angus Gruen,et al.  Computing Modular Data for Drinfeld Centers of Pointed Fusion Categories , 2017 .

[41]  P. Bántay The Kernel of the Modular Representation and the Galois Action in RCFT , 2001, math/0102149.

[42]  Zhenghan Wang,et al.  In and around abelian anyon models , 2020, Journal of Physics A: Mathematical and Theoretical.

[43]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[44]  M. Troyer,et al.  Microscopic models of interacting Yang–Lee anyons , 2010, 1012.1080.

[45]  Liang Kong,et al.  The center of monoidal bicategories in 3+1D Dijkgraaf-Witten Theory , 2019, 1905.04644.

[46]  T. Gannon,et al.  Vanishing of Categorical Obstructions for Permutation Orbifolds , 2018, Communications in Mathematical Physics.

[47]  David J. Reutter Uniqueness of Unitary Structure for Unitarizable Fusion Categories , 2019, Communications in Mathematical Physics.

[48]  Yuji Tachikawa On gauging finite subgroups , 2017, SciPost Physics.

[49]  J. Fuchs,et al.  Modular invariants and fusion rule automorphisms from Galois theory , 1994, hep-th/9405153.

[50]  Franz Lemmermeyer,et al.  Introduction to Algebraic Geometry , 2005 .

[51]  S. Yamagami Polygonal presentations of semisimple tensor categories , 2002 .

[52]  Matthew Titsworth,et al.  Classification of Metaplectic Fusion Categories , 2016, Symmetry.

[53]  On the classification of topological orders , 2020, 2003.06663.

[54]  Tobias J. Hagge,et al.  On Arithmetic Modular Categories , 2013, 1305.2229.

[55]  Ross Street,et al.  AN INTRODUCTION TO TANNAKA DUALITY AND QUANTUM GROUPS , 1991 .

[56]  D. Tambara Invariants and semi-direct products for finite group actions on tensor categories , 2001 .

[57]  Eric C. Rowell,et al.  Rank-finiteness for modular categories , 2013, 1310.7050.

[58]  C. Schweigert,et al.  Galois modular invariants of WZW models , 1994, hep-th/9410010.

[59]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[60]  Noah Snyder,et al.  Non-cyclotomic fusion categories , 2010, 1002.0168.

[61]  S. Natale On weakly group-theoretical non-degenerate braided fusion categories , 2013, 1301.6078.

[62]  Ce Shen,et al.  Defect Verlinde Formula for Edge Excitations in Topological Order. , 2019, Physical review letters.

[63]  Clay Córdova,et al.  On 2-group global symmetries and their anomalies , 2018, Journal of High Energy Physics.

[64]  T. Gannon,et al.  Remarks on Galois symmetry in rational conformal field theories , 1994 .

[65]  V. Drinfeld,et al.  On braided fusion categories I , 2009, 0906.0620.

[66]  Meng Cheng,et al.  Symmetry fractionalization, defects, and gauging of topological phases , 2014, Physical Review B.

[67]  Nathan Seiberg,et al.  LECTURES ON RCFT , 1989 .

[68]  Yuan-Ming Lu,et al.  Spontaneous symmetry breaking from anyon condensation , 2018, Journal of High Energy Physics.

[69]  A. Polyakov Nonhamiltonian approach to conformal quantum field theory , 1974 .

[70]  A. Zamolodchikov,et al.  Conformal field theory and 2-D critical phenomena. 3. Conformal bootstrap and degenerate representations of conformal algebra , 1990 .

[71]  Zhenghan Wang,et al.  On Classification of Modular Tensor Categories , 2007, 0712.1377.

[72]  Yidun Wan,et al.  Twisted quantum double model of topological order with boundaries , 2017, 1706.03611.