Transport distances and geodesic convexity for systems of degenerate diffusion equations

We introduce Wasserstein-like dynamical transport distances between vector-valued densities on $${\mathbb {R}}$$R. The mobility function from the scalar theory is replaced by a mobility matrix, that is subject to positivity and concavity conditions. Our primary motivation is to cast certain systems of nonlinear parabolic evolution equations in the variational framework of gradient flows.In the first part of the paper, we investigate the structural properties of the new class of distances like geodesic completeness.The second part is devoted to the identification of $$\lambda $$λ-geodesically convex functionals and their $$\lambda $$λ-contractive gradient flows. One of our results is a generalized McCann condition for geodesic convexity of the internal energy. In the third part, the existence of weak solutions to a certain class of degenerate drift-diffusion systems is shown. Even if the underlying energy function is not geodesically convex w.r.t. our new distance, the construction of a weak solution is still possible using de Giorgi’s minimizing movement scheme.

[1]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[2]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[3]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[4]  H. Amann Dynamic theory of quasilinear parabolic systems. III. Global existence (Erratum). , 1990 .

[5]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[6]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[7]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[8]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[9]  Lorenzo Giacomelli,et al.  Variatonal formulation for the lubrication approximation of the Hele-Shaw flow , 2001 .

[10]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[11]  Riccarda Rossi,et al.  Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces , 2003 .

[12]  C. Villani Topics in Optimal Transportation , 2003 .

[13]  Felix Otto,et al.  Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..

[14]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[15]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[16]  Ansgar Jüngel,et al.  Analysis of a parabolic cross-diffusion population model without self-diffusion , 2006 .

[17]  Sara Daneri,et al.  Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..

[18]  A. Marigonda,et al.  On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals , 2009, 0909.2512.

[19]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[20]  Jos'e Antonio Carrillo,et al.  Nonlinear mobility continuity equations and generalized displacement convexity , 2009, 0901.3978.

[21]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[22]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.

[23]  Martin Burger,et al.  Nonlinear Cross-Diffusion with Size Exclusion , 2010, SIAM J. Math. Anal..

[24]  Alexander Mielke,et al.  A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .

[25]  Alexander Mielke,et al.  Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions , 2012 .

[26]  Guillaume Carlier,et al.  Geodesics for a class of distances in the space of probability measures , 2012, 1204.2517.

[27]  Daniel Matthes,et al.  Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics , 2012, 1201.2367.

[28]  Annegret Glitzky,et al.  A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces , 2012 .

[29]  Ansgar Jüngel,et al.  ENTROPY STRUCTURE OF A CROSS-DIFFUSION TUMOR-GROWTH MODEL , 2012 .

[30]  Matthias Liero,et al.  Gradient structures and geodesic convexity for reaction–diffusion systems , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  M. Burger,et al.  Mean field games with nonlinear mobilities in pedestrian dynamics , 2013, 1304.5201.

[32]  Ansgar Jungel,et al.  The boundedness-by-entropy principle for cross-diffusion systems , 2014, 1403.5419.

[33]  Ansgar Jüngel,et al.  The boundedness-by-entropy method for cross-diffusion systems , 2015 .