A Low-Jitter Ring-Oscillator Phase-Locked Loop Using Feedforward Noise Cancellation With a Sub-Sampling Phase Detector

Ring-oscillator (RO)-based phase-locked loops (PLLs) are very attractive for system-on-chip applications for their compactness and tuning range, but suffer from high jitter and supply noise sensitivity. This paper presents a sub-sampling phase detector (SSPD)-based feedforward noise cancellation (FFNC) technique to improve these drawbacks of the RO PLL. The FFNC scheme utilizes the already available SSPD output to perform cancellation with high sensitivity while utilizing low power and area overhead. The 2- to 2.8-GHz RO PLL proof-of-principle prototype occupies 0.022 mm<sup>2</sup> active area in 65 nm CMOS; it achieves a 633 fs rms jitter at 2.36 GHz with 5.86 mW power consumption and an figure of merit (FOM<sub>jitter</sub>) of −236.3 dB. The cancellation reduces the jitter by <inline-formula> <tex-math notation="LaTeX">$1.4\times $ </tex-math></inline-formula>, the phase noise by 10.2 dB to −123.5 dBc/Hz at 300-kHz offset, and the RO supply sensitivity by 19.5 dB for a 1 mV<sub>pp</sub> 100-kHz noise tone on the RO supply.

[1]  Hyung-Jin Lee,et al.  A TDC-less ADPLL with 200-to-3200MHz range and 3mW power dissipation for mobile SoC clocking in 22nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[2]  Eric A. M. Klumperink,et al.  Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector , 2010, IEEE Journal of Solid-State Circuits.

[3]  Ping-Ying Wang,et al.  15.3 A 2.4GHz ADPLL with digital-regulated supply-noise-insensitive and temperature-self-compensated ring DCO , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[4]  B. Nauta,et al.  A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by $N ^{2}$ , 2009, IEEE Journal of Solid-State Circuits.

[5]  Amr Elshazly,et al.  19.4 A 0.17-to-3.5mW 0.15-to-5GHz SoC PLL with 15dB built-in supply noise rejection and self-bandwidth control in 14nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[6]  S. Gondi,et al.  Low-Power Supply-Regulation Techniques for Ring Oscillators in Phase-Locked Loops Using a Split-Tuned Architecture , 2009, IEEE Journal of Solid-State Circuits.

[7]  Chih-Kong Ken Yang,et al.  A low-power adaptive bandwidth PLL and clock buffer with supply-noise compensation , 2003 .

[8]  J. Wei,et al.  A 0.4-4 Gb/s CMOS quad transceiver cell using on-chip regulated dual-loop PLLs , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[9]  Xiang Yi,et al.  A low phase noise 24/77 GHz dual-band sub-sampling PLL for automotive radar applications in 65 nm CMOS technology , 2013, 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[10]  Peter R. Kinget,et al.  A Sub-Sampling-Assisted Phase-Frequency Detector for Low-Noise PLLs With Robust Operation Under Supply Interference , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Jan Craninckx,et al.  A 9.2–12.7 GHz Wideband Fractional-N Subsampling PLL in 28 nm CMOS With 280 fs RMS Jitter , 2015, IEEE Journal of Solid-State Circuits.

[12]  Harish Krishnaswamy,et al.  19.4 A 0.0049mm2 2.3GHz sub-sampling ring-oscillator PLL with time-based loop filter achieving −236.2dB jitter-FOM , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[13]  Bertan Bakkaloglu,et al.  A 90-nm CMOS 5-GHz Ring-Oscillator PLL With Delay-Discriminator-Based Active Phase-Noise Cancellation , 2013, IEEE Journal of Solid-State Circuits.

[14]  Pavan Kumar Hanumolu,et al.  19.8 A 0.0021mm2 1.82mW 2.2GHz PLL using time-based integral control in 65nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[15]  Taeik Kim,et al.  15.2 A 0.012mm2 3.1mW bang-bang digital fractional-N PLL with a power-supply-noise cancellation technique and a walking-one-phase-selection fractional frequency divider , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[16]  Eric A. M. Klumperink,et al.  Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[17]  Yen-Hsiang Wang,et al.  14.9 Sub-sampling all-digital fractional-N frequency synthesizer with −111dBc/Hz in-band phase noise and an FOM of −242dB , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[18]  Takamaro Kikkawa,et al.  A ring-VCO-based sub-sampling PLL CMOS circuit with −119 dBc/Hz phase noise and 0.73 ps jitter , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[19]  Peter R. Kinget,et al.  A −236.3dB FoM sub-sampling low-jitter supply-robust ring-oscillator PLL for clocking applications with feed-forward noise-cancellation , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[20]  Yuka Kobayashi,et al.  A digitally stabilized type-III PLL using ring VCO with 1.01psrms integrated jitter in 65nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[21]  E. Alon,et al.  Replica compensated linear regulators for supply-regulated phase-locked loops , 2006, IEEE Journal of Solid-State Circuits.

[22]  M. Horowitz,et al.  Adaptive bandwidth DLLs and PLLs using regulated supply CMOS buffers , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[23]  Taeik Kim,et al.  19.3 A 2.4GHz 1.5mW digital MDLL using pulse-width comparator and double injection technique in 28nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[24]  Kenichi Okada,et al.  A 2.2 GHz -242 dB-FOM 4.2 mW ADC-PLL Using Digital Sub-Sampling Architecture , 2016, IEEE Journal of Solid-State Circuits.

[25]  Eric A. M. Klumperink,et al.  Sub-sampling PLL techniques , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[26]  Zhiqiang Huang,et al.  2.3 A 4.2µs-settling-time 3rd-order 2.1GHz phase-noise-rejection PLL using a cascaded time-amplified clock-skew sub-sampling DLL , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[27]  Behzad Razavi,et al.  A 2.4 GHz 4 mW Integer-N Inductorless RF Synthesizer , 2016, IEEE Journal of Solid-State Circuits.

[28]  Amr Elshazly,et al.  A 0.4-to-3 GHz Digital PLL With PVT Insensitive Supply Noise Cancellation Using Deterministic Background Calibration , 2011, IEEE Journal of Solid-State Circuits.

[29]  Ahmed Elkholy,et al.  8.6 A 2.5-to-5.75GHz 5mW 0.3psrms-jitter cascaded ring-based digital injection-locked clock multiplier in 65nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[30]  U. Moon,et al.  An On-Chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators , 2006, VLSIC 2006.

[31]  Fa Foster Dai,et al.  A low-noise inductor-less fractional-N sub-sampling PLL with multi-ring oscillator , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[32]  Lee-Sup Kim,et al.  A 5-Gb/s Digital Clock and Data Recovery Circuit With Reduced DCO Supply Noise Sensitivity Utilizing Coupling Network , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[33]  Mau-Chung Frank Chang,et al.  Digital PLL for phase noise cancellation in ring oscillator-based I/Q receivers , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).