Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64‐channel receive array

Despite the clear synergy between high channel counts in a receive array and magnetic fields ≥ 7 Tesla, to date such systems have been restricted to a maximum of 32 channels. Here, we examine SNR gains at 7 Tesla in unaccelerated and accelerated images with a 64‐receive channel (64Rx) RF coil.

[1]  R. Goebel,et al.  Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI , 2011, PloS one.

[2]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[3]  Laurens J. De Cocker,et al.  Clinical vascular imaging in the brain at 7 T☆ , 2016, NeuroImage.

[4]  P B Roemer,et al.  Volume imaging with MR phased arrays , 1991, Magnetic resonance in medicine.

[5]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[6]  Vasily L Yarnykh,et al.  Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field , 2007, Magnetic resonance in medicine.

[7]  Kamil Ugurbil,et al.  Neither Flat Profile Nor Black Spots : A Simple Method to Achieve Acceptable CP-like Mode Transmit B 1 Pattern for Whole Brain Imaging with Transmit Arrays at 7 Tesla , 2011 .

[8]  Jacob K. White,et al.  The ultimate signal‐to‐noise ratio in realistic body models , 2017, Magnetic resonance in medicine.

[9]  Kawin Setsompop,et al.  Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate , 2015, Magnetic resonance in medicine.

[10]  Gareth Loy,et al.  7T MR of intracranial pathology: Preliminary observations and comparisons to 3T and 1.5T , 2016, NeuroImage.

[11]  H. Ermert,et al.  Ultimate signal-to-noise-ratio of surface and body antennas for magnetic resonance imaging , 2000 .

[12]  S M Wright,et al.  Design of Matching Networks for Low Noise Preamplifiers , 1995, Magnetic resonance in medicine.

[13]  K. Uğurbil,et al.  Parallel imaging performance as a function of field strength—An experimental investigation using electrodynamic scaling , 2004, Magnetic resonance in medicine.

[14]  Jonathan R. Polimeni,et al.  Neuroimaging with ultra-high field MRI: Present and future , 2018, NeuroImage.

[15]  Myung-Ho In,et al.  High-resolution diffusion MRI at 7T using a three-dimensional multi-slab acquisition , 2016, NeuroImage.

[16]  Daniel K Sodickson,et al.  Approaching Ultimate Intrinsic SNR in a Uniform Spherical Sample with Finite Arrays of Loop Coils. , 2014, Concepts in magnetic resonance. Part B, Magnetic resonance engineering.

[17]  E. Atalar,et al.  Ultimate intrinsic signal‐to‐noise ratio in MRI , 1998, Magnetic resonance in medicine.

[18]  Elfar Adalsteinsson,et al.  Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics , 2015, Magnetic resonance in medicine.

[19]  Robin M Heidemann,et al.  Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging , 2005, Magnetic resonance in medicine.

[20]  Xiaoping Wu,et al.  Parallel excitation in the human brain at 9.4 T counteracting k‐space errors with RF pulse design , 2010, Magnetic resonance in medicine.

[21]  A. D. Hendriks,et al.  Potential acceleration performance of a 256‐channel whole‐brain receive array at 7 T , 2018, Magnetic resonance in medicine.

[22]  Wolfgang Bogner,et al.  Key clinical benefits of neuroimaging at 7 T , 2016, NeuroImage.

[23]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[24]  Steen Moeller,et al.  B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil , 2005, Magnetic resonance in medicine.

[25]  Steen Moeller,et al.  A 32‐channel lattice transmission line array for parallel transmit and receive MRI at 7 tesla , 2010, Magnetic resonance in medicine.

[26]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[27]  Klaus Scheffler,et al.  Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays , 2016, Magnetic resonance in medicine.

[28]  Lawrence L Wald,et al.  Massively parallel MRI detector arrays. , 2013, Journal of magnetic resonance.

[29]  Steen Moeller,et al.  High‐resolution whole‐brain diffusion MRI at 7T using radiofrequency parallel transmission , 2018, Magnetic resonance in medicine.

[30]  Robert Turner,et al.  Analysis of RF transmit performance for a 7T dual row multichannel MRI loop array , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[31]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[32]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[33]  K. Uğurbil,et al.  Transmit and receive transmission line arrays for 7 Tesla parallel imaging , 2005, Magnetic resonance in medicine.

[34]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[35]  Klaus Scheffler,et al.  A 16‐channel dual‐row transmit array in combination with a 31‐element receive array for human brain imaging at 9.4 T , 2014, Magnetic resonance in medicine.

[36]  Essa Yacoub,et al.  Pushing the spatio-temporal limits of MRI and fMRI , 2018, NeuroImage.

[37]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[38]  P. Tofts PD: Proton Density of Tissue Water , 2004 .

[39]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[40]  Kâmil Uğurbil,et al.  A generalized slab‐wise framework for parallel transmit multiband RF pulse design , 2016, Magnetic resonance in medicine.

[41]  Kâmil Uğurbil,et al.  Dynamically applied B1+ shimming solutions for non‐contrast enhanced renal angiography at 7.0 tesla , 2013, Magnetic resonance in medicine.

[42]  Peter J. Koopmans,et al.  Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7T , 2012, NeuroImage.

[43]  Felix Breuer,et al.  Simultaneous multislice (SMS) imaging techniques , 2015, Magnetic resonance in medicine.

[44]  Steen Moeller,et al.  Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project , 2017, NeuroImage.

[45]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[46]  Kâmil Uğurbil,et al.  Distributing coil elements in three dimensions enhances parallel transmission multiband RF performance: A simulation study in the human brain at 7 Tesla , 2016, Magnetic resonance in medicine.

[47]  Wietske van der Zwaag,et al.  Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function , 2017, NeuroImage.

[48]  Josef Pfeuffer,et al.  Seven-Tesla Time-of-Flight Angiography Using a 16-Channel Parallel Transmit System With Power-Constrained 3-dimensional Spoke Radiofrequency Pulse Design , 2014, Investigative radiology.

[49]  Jeff H. Duyn,et al.  Studying brain microstructure with magnetic susceptibility contrast at high-field , 2017, NeuroImage.

[50]  Peter J. Koopmans,et al.  Whole brain, high resolution multiband spin-echo EPI fMRI at 7T: A comparison with gradient-echo EPI using a color-word Stroop task , 2014, NeuroImage.

[51]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[52]  P. Boesiger,et al.  Electrodynamics and ultimate SNR in parallel MR imaging , 2004, Magnetic resonance in medicine.

[53]  J. Polimeni,et al.  96‐Channel receive‐only head coil for 3 Tesla: Design optimization and evaluation , 2009, Magnetic resonance in medicine.

[54]  Steen Moeller,et al.  Simultaneous multislice multiband parallel radiofrequency excitation with independent slice‐specific transmit B1 homogenization , 2013, Magnetic resonance in medicine.

[55]  L. Wald,et al.  A 64‐channel 3T array coil for accelerated brain MRI , 2013, Magnetic resonance in medicine.

[56]  J. Polimeni,et al.  Performance evaluation of a 32‐element head array with respect to the ultimate intrinsic SNR , 2010, NMR in biomedicine.

[57]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[58]  Essa Yacoub,et al.  The impact of ultra-high field MRI on cognitive and computational neuroimaging , 2017, NeuroImage.

[59]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[60]  Johannes Ritter,et al.  Experimental verification of enhanced B1 Shim performance with a Z-encoding RF coil array at 7 tesla. , 2010 .

[61]  G. Metzger,et al.  Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements , 2008, Magnetic resonance in medicine.

[62]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[63]  S.N. Sotiropoulos,et al.  High resolution whole brain diffusion imaging at 7T for the Human Connectome Project , 2015, NeuroImage.

[64]  Kamil Ugurbil,et al.  Imaging at ultrahigh magnetic fields: History, challenges, and solutions , 2017, NeuroImage.

[65]  Mark E Ladd,et al.  RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high‐field MRI , 2010, Magnetic resonance in medicine.

[66]  D. Sodickson,et al.  Ultimate intrinsic signal‐to‐noise ratio for parallel MRI: Electromagnetic field considerations , 2003, Magnetic resonance in medicine.

[67]  D. Hoult,et al.  Selective population inversion in NMR , 1984, Nature.

[68]  Peter Kellman,et al.  Image reconstruction in SNR units: A general method for SNR measurement † , 2005, Magnetic resonance in medicine.

[69]  Kawin Setsompop,et al.  Simultaneous multislice excitation by parallel transmission , 2014, Magnetic resonance in medicine.

[70]  Florian Wiesinger,et al.  Parallel magnetic resonance imaging: potential and limitations at high fields , 2005 .

[71]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[72]  K. Uğurbil,et al.  Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo , 2007, Magnetic resonance in medicine.

[73]  Kamil Ugurbil,et al.  Potential and feasibility of parallel MRI at high field , 2006, NMR in biomedicine.

[74]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[75]  E. McVeigh,et al.  Signal‐to‐noise measurements in magnitude images from NMR phased arrays , 1997 .

[76]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[77]  E. Adalsteinsson,et al.  Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels , 2008, Magnetic resonance in medicine.

[78]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[79]  Roland Bammer,et al.  Low peak power multiband spokes pulses for B1+ inhomogeneity‐compensated simultaneous multislice excitation in high field MRI , 2015, Magnetic resonance in medicine.

[80]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.