Membrane gas separation technologies for biogas upgrading

Biogas is a renewable energy source like solar and wind energies and mostly produced from anaerobic digestion (AD). The production of biogas is a well-established technology, but its commercial utilization is limited because on-site purification is needed before its transport or use. Biogas composition varies with the biomass digested and contains mainly methane (CH4) and carbon dioxide (CO2), as well as traces of hydrogen sulfide (H2S), ammonia (NH3), hydrogen (H2), nitrogen (N2), carbon monoxide (CO), oxygen (O2). In some cases dust particles and siloxanes are present. Several purification processes including pressurized water scrubbing, amine swing absorption, pressure swing adsorption, temperature swing adsorption, cryogenic separation and membrane technologies have been developed. Nevertheless, membrane technology is a relatively recent but very promising technology. Also, hybrid processes where membranes are combined with other processes are believed to have lower investment and operation costs compared with other processes. In this report, a discussion on the different materials used to produce membranes for gas separation is given including inorganic, organic and mixed matrix membranes, as well as polymer of intrinsic microporosity (PIM). Advantages and limitations for each type are discussed and comparisons are made in terms of permeability and diffusivity for a range of operating conditions.

[1]  S. Shishatskiy,et al.  Stability of blended polymeric materials for CO2 separation , 2014 .

[2]  Kaisa Manninen,et al.  Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use , 2014 .

[3]  Lin Hao,et al.  PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide , 2014 .

[4]  S. Kaliaguine,et al.  A comprehensive computational strategy for fitting experimental permeation data of mixed matrix membranes , 2014 .

[5]  S. Zein,et al.  A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation , 2014 .

[6]  G. Bengtson,et al.  Cross-linking of Polymer of Intrinsic Microporosity (PIM-1) via nitrene reaction and its effect on gas transport property , 2013 .

[7]  Arthur P.J. Mol,et al.  The social organization of agricultural biogas production and use , 2013 .

[8]  I. Vankelecom,et al.  Mixed matrix membranes comprising of Matrimid and -SO3H functionalized mesoporous MCM-41 for gas separation , 2013 .

[9]  Matthias Wessling,et al.  Techno-economic Analysis of Hybrid Processes for Biogas Upgrading , 2013 .

[10]  S. Kaliaguine,et al.  Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation , 2013 .

[11]  Tai‐Shung Chung,et al.  High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation , 2013 .

[12]  J. Leonhardt-Balzer,et al.  PHILO , 2013, The Classical Review.

[13]  Anton Friedl,et al.  Environmental Impact Assessment of High Pressure Water Scrubbing Biogas Upgrading Technology , 2013 .

[14]  A. Ismail,et al.  Beta-cyclodextrin functionalized MWCNT: A potential nano-membrane material for mixed matrix gas separation membranes development , 2013 .

[15]  K. Kalantar-zadeh,et al.  CNT/PDMS composite membranes for H2 and CH4 gas separation , 2013 .

[16]  G. Bengtson,et al.  Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM) , 2013 .

[17]  Bahtiyar Ozturk,et al.  Comparison of biogas upgrading performances of different mixed matrix membranes , 2013 .

[18]  S. Kaliaguine,et al.  Mixed gas and pure gas transport properties of copolyimide membranes , 2013 .

[19]  A. Moghadassi,et al.  Preparation and Characterization of Polycarbonate-Blend-Raw/Functionalized Multi-Walled Carbon Nano Tubes Mixed Matrix Membrane for CO2 Separation , 2013 .

[20]  D. Bastani,et al.  Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review , 2013 .

[21]  A. Moghadassi,et al.  Preparation and characterization of polyvinylchloride based mixed matrix membrane filled with multi walled carbon nano tubes for carbon dioxide separation , 2013 .

[22]  Christopher R. Mason,et al.  Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 , 2013 .

[23]  J. C. Jansen,et al.  A Spirobifluorene‐Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation , 2012, Advanced materials.

[24]  M Miltner,et al.  Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study. , 2012, Water science and technology : a journal of the International Association on Water Pollution Research.

[25]  H. Kalipcilar,et al.  Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes , 2012 .

[26]  M. Buonomenna,et al.  Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes , 2012 .

[27]  Juin-Yih Lai,et al.  Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future , 2012 .

[28]  Haibin Li,et al.  Design and economics of a hybrid membrane–temperature swing adsorption process for upgrading biogas , 2012 .

[29]  Omid Ghaffari Nik,et al.  Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation , 2012 .

[30]  G. Bengtson,et al.  Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation , 2012, Nanoscale Research Letters.

[31]  M. A. Alam,et al.  Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation , 2012 .

[32]  Pei Li,et al.  Molecular engineering of PIM-1/Matrimid blend membranes for gas separation , 2012 .

[33]  Omid Ghaffari Nik,et al.  Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO2/CH4 separation , 2012 .

[34]  D. Sholl,et al.  Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations , 2012 .

[35]  Denis Rodrigue,et al.  Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation , 2012 .

[36]  J. A. Alburquerque,et al.  Assessment of the fertiliser potential of digestates from farm and agroindustrial residues , 2012 .

[37]  S. Kaliaguine,et al.  Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes , 2012 .

[38]  G. Sakellaropoulos,et al.  Gas Separation Properties of Polyimide-Zeolite Mixed Matrix Membranes , 2012 .

[39]  Sumit Kumar,et al.  Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes , 2012 .

[40]  Michael R. Templeton,et al.  History and future of domestic biogas plants in the developing world , 2011 .

[41]  Omid Ghaffari Nik,et al.  Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO 2/CH 4 separation , 2011 .

[42]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[43]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[44]  B. C. Ng,et al.  Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes , 2011 .

[45]  B. C. Ng,et al.  Effect of Dispersed Multi-Walled Carbon Nanotubes on Mixed Matrix Membrane for O2/N2 Separation , 2011 .

[46]  T. Verbiest,et al.  Improving fluxes of polyimide membranes containing gold nanoparticles by photothermal heating , 2011 .

[47]  P. Goh,et al.  Gas separation properties of functionalized carbon nanotubes mixed matrix membranes , 2011 .

[48]  Shaomin Liu,et al.  Investigation of Gas Permeability in Carbon Nanotube (CNT)−Polymer Matrix Membranes via Modifying CNTs with Functional Groups/Metals and Controlling Modification Location , 2011 .

[49]  Jason K. Ward,et al.  CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes , 2011 .

[50]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[51]  A. Ismail,et al.  Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes , 2010 .

[52]  Yong-ming Wei,et al.  Mixed-Matrix Membrane Hollow Fibers of Cu3(BTC)2 MOF and Polyimide for Gas Separation and Adsorption , 2010 .

[53]  S. Basu,et al.  Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations , 2010 .

[54]  J. Ferraris,et al.  Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes , 2010 .

[55]  W. Koros,et al.  Gas-Transport-Property Performance of Hybrid Carbon Molecular Sieve−Polymer Materials , 2010 .

[56]  Seda Keskin Molecular Simulation Study of CH4/H2 Mixture Separations Using Metal Organic Framework Membranes and Composites , 2010 .

[57]  Martin Miltner,et al.  Membrane biogas upgrading processes for the production of natural gas substitute , 2010 .

[58]  May-Britt Hägg,et al.  Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane , 2010 .

[59]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[60]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[61]  G. Koeckelberghs,et al.  A simplified diamine crosslinking method for PI nanofiltration membranes , 2010 .

[62]  Vicki Chen,et al.  Factors affect defect-free Matrimid® hollow fiber gas separation performance in natural gas purification , 2010 .

[63]  P. He Anaerobic digestion: An intriguing long history in China. , 2010, Waste management.

[64]  D. Sholl,et al.  Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification , 2010 .

[65]  Ivo F. J. Vankelecom,et al.  Membrane-based technologies for biogas separations. , 2010, Chemical Society reviews.

[66]  Naiying Du,et al.  Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity ( PIM-1 ) , 2012 .

[67]  L. F. Castillo,et al.  CO2 Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks As Determined by Permeation and PFG NMR Techniques , 2010 .

[68]  P. Goh,et al.  Transport and separation properties of carbon nanotube-mixed matrix membrane , 2009 .

[69]  Michael Harasek,et al.  Numerical algorithm for modelling multicomponent multipermeator systems , 2009 .

[70]  W. Ho,et al.  Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation , 2009 .

[71]  H. Tseng,et al.  Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation , 2009 .

[72]  Seda Keskin,et al.  Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[73]  I. Pinnau,et al.  Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1) , 2009 .

[74]  A. Harris,et al.  A review of carbon nanotube purification by microwave assisted acid digestion , 2009 .

[75]  J. Ferraris,et al.  Mixed-matrix membranes containing MOF-5 for gas separations , 2009 .

[76]  Tai‐Shung Chung,et al.  The rheology of Torlon® solutions and its role in the formation of ultra-thin defect-free Torlon® hollow fiber membranes for gas separation , 2009 .

[77]  J. Baeyens,et al.  Principles and potential of the anaerobic digestion of waste-activated sludge , 2008 .

[78]  Neil B. McKeown,et al.  Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1 , 2008 .

[79]  Tai‐Shung Chung,et al.  The fabrication of hollow fiber membranes with double-layer mixed-matrix materials for gas separation , 2008 .

[80]  J. Ferraris,et al.  Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles , 2008 .

[81]  J. Caro,et al.  Zeolite membranes – Recent developments and progress , 2008 .

[82]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[83]  Norman N. Li Advanced membrane technology and applications , 2008 .

[84]  L. Robeson,et al.  The upper bound revisited , 2008 .

[85]  A. Ismail,et al.  Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent , 2008 .

[86]  Stephen J. Miller,et al.  Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification , 2008 .

[87]  J. Ferraris,et al.  Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS , 2008 .

[88]  Jun Ma,et al.  Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport , 2008 .

[89]  Robert Y. M. Huang,et al.  Synthetic 6FDA-ODA Copolyimide Membranes for Gas Separation and Pervaporation : Correlation of Separation Properties With Diamine Monomers , 2008 .

[90]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[91]  P. Budd,et al.  Polymers of Intrinsic Microporosity Derived from Bis(phenazyl) Monomers , 2008 .

[92]  A. Ismail,et al.  Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve–polysulfone mixed matrix membrane , 2008 .

[93]  Matthias Wessling,et al.  Materials dependence of mixed gas plasticization behavior in asymmetric membranes , 2007 .

[94]  Quan Yuan,et al.  Novel copolyimide membranes for gas separation , 2007 .

[95]  Tejraj M. Aminabhavi,et al.  Matrimid polyimide membranes for the separation of carbon dioxide from methane , 2007 .

[96]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[97]  Robert Y. M. Huang,et al.  Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation : Functional groups and separation properties , 2007 .

[98]  Saija Rasi,et al.  Trace compounds of biogas from different biogas production plants. , 2007 .

[99]  D. Thurston,et al.  Steady-state and dynamic desorption of organic vapor from activated carbon with electrothermal swing adsorption. , 2007, Environmental science & technology.

[100]  A. Chmielewski,et al.  Application of polyimide membranes for biogas purification and enrichment. , 2007, Journal of hazardous materials.

[101]  M. Radosz,et al.  Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation , 2007 .

[102]  Sangil Kim,et al.  Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment , 2007 .

[103]  Tejraj M. Aminabhavi,et al.  Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes—A Review , 2007 .

[104]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[105]  D. Kemp,et al.  The diffusion time lag in polymer membranes containing adsorptive fillers , 2007 .

[106]  S. Kulprathipanja,et al.  Novel Ag+‐zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity , 2007 .

[107]  William J. Koros,et al.  Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation , 2007 .

[108]  William J. Koros,et al.  Cross-Linkable Polyimide Membrane for Natural Gas Purification and Carbon Dioxide Plasticization Reduction , 2007 .

[109]  Neil B. McKeown,et al.  Polymers of Intrinsic Microporosity (PIMs): High Free Volume Polymers for Membrane Applications , 2006 .

[110]  T. Melin,et al.  Siloxane removal with gas permeation membranes , 2006 .

[111]  A. Car,et al.  Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation , 2006 .

[112]  Chang-Ha Lee,et al.  Comparison of vacuum swing adsorption process for air separation using zeolite 10X and 13X , 2006 .

[113]  C. Feng,et al.  Gas permeation properties of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes , 2006 .

[114]  Lan Ying Jiang,et al.  Fabrication of mixed matrix hollow fibers with intimate polymer–zeolite interface for gas separation , 2006 .

[115]  Raf Dewil,et al.  Energy use of biogas hampered by the presence of siloxanes. , 2006 .

[116]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[117]  Benny D. Freeman,et al.  Materials science of membranes for gas and vapor separation , 2006 .

[118]  Zhen Huang,et al.  Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation , 2006 .

[119]  Sangil Kim,et al.  Fabrication and characterization of polyimide–zeolite L mixed matrix membranes for gas separations , 2006 .

[120]  Sangil Kim,et al.  Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation , 2006 .

[121]  S. Kulprathipanja,et al.  The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes , 2005 .

[122]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[123]  Chun Cao,et al.  Fabrication of Matrimid/polyethersulfone dual-layer hollow fiber membranes for gas separation , 2004 .

[124]  E. Drioli,et al.  Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane , 2004 .

[125]  T. Tomita,et al.  Gas separation characteristics of DDR type zeolite membrane , 2004 .

[126]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[127]  H. Kita,et al.  Preparation and gas separation performance of zeolite T membrane , 2004 .

[128]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[129]  B. Freeman,et al.  Sorption and Transport of Linear Esters and Branched Alkanes in Biaxially Oriented Poly(ethylene terephthalate) , 2004 .

[130]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[131]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[132]  S. Goh,et al.  The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging , 2003 .

[133]  P. Tin,et al.  Effects of cross-linking modification on gas separation performance of Matrimid membranes , 2003 .

[134]  Stephen J. Miller,et al.  Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves , 2003 .

[135]  Stephen M. Sirard,et al.  Carbon Dioxide-Induced Plasticization of Polyimide Membranes: Pseudo-Equilibrium Relationships of Diffusion, Sorption, and Swelling , 2003 .

[136]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[137]  S. Sharma,et al.  Biomethanation under psychrophilic conditions: a review. , 2003, Bioresource technology.

[138]  May-Britt Hägg,et al.  Carbon Molecular Sieve Membranes , 2003 .

[139]  Donald R Paul,et al.  Solid-State Covalent Cross-Linking of Polyimide Membranes for Carbon Dioxide Plasticization Reduction , 2003 .

[140]  Stephen J. Miller,et al.  Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior , 2003 .

[141]  William J. Koros,et al.  Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results , 2003 .

[142]  Yen-Hsin Liu,et al.  Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation , 2002 .

[143]  Donald R Paul,et al.  The Effects of Crosslinking Chemistry on CO2 Plasticization of Polyimide Gas Separation Membranes , 2002 .

[144]  D. Sholl,et al.  Rapid transport of gases in carbon nanotubes. , 2002, Physical review letters.

[145]  M. Tsapatsis,et al.  Preparation and characterization of a glassy fluorinated polyimide zeolite-mixed matrix membrane , 2002 .

[146]  Rajiv Mahajan,et al.  Mixed matrix membrane materials with glassy polymers. Part 1 , 2002 .

[147]  Rajiv Mahajan,et al.  Mixed matrix membrane materials with glassy polymers. Part 2 , 2002 .

[148]  Houping Huang,et al.  Method to Regenerate Ammonia for the Capture of Carbon Dioxide , 2002 .

[149]  R. Baker Future directions of membrane gas separation technology , 2002 .

[150]  William J. Koros,et al.  High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fiber Membranes , 2002 .

[151]  Ahmad Fauzi Ismail,et al.  A review on the latest development of carbon membranes for gas separation , 2001 .

[152]  Tai‐Shung Chung,et al.  Chemical cross-linking modification of polyimide membranes for gas separation , 2001 .

[153]  Y. Kang,et al.  Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine , 2001 .

[154]  Klaus-Viktor Peinemann,et al.  Membrane Technology: in the Chemical Industry , 2001 .

[155]  Ineke G.M. Punt,et al.  Suppression of gas separation membrane plasticization by homogeneous polymer blending , 2001 .

[156]  B. Schoeman,et al.  Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membranes , 2000 .

[157]  B. Freeman,et al.  Membrane formation and modification , 1999 .

[158]  R. Baker Membrane Technology and Applications , 1999 .

[159]  H. Kawakami,et al.  Gas transport properties and molecular motions of 6FDA copolyimides , 1999 .

[160]  V. Bondar,et al.  Gas sorption and characterization of poly(ether‐b‐amide) segmented block copolymers , 1999 .

[161]  V. Bondar,et al.  Sorption of gases and vapors in an amorphous glassy perfluorodioxole copolymer , 1999 .

[162]  William J. Koros,et al.  Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking , 1999 .

[163]  Matthias Wessling,et al.  CO2-induced plasticization phenomena in glassy polymers , 1999 .

[164]  K. Kusakabe,et al.  Microporous Inorganic Membranes for Gas Separation , 1999 .

[165]  Matthias Wessling,et al.  Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations , 1998 .

[166]  Ineke G.M. Punt,et al.  Suppression of CO2‐plasticization by semiinterpenetrating polymer network formation , 1998 .

[167]  Benny D. Freeman,et al.  Modeling multicomponent gas separation using hollow‐fiber membrane contactors , 1998 .

[168]  S. A. Stern,et al.  Hybrid processes for the removal of acid gases from natural gas , 1998 .

[169]  Tai‐Shung Chung,et al.  The effects of spinning conditions on asymmetric 6FDA/6FDAM polyimide hollow fibers for air separation , 1997 .

[170]  E. Drioli,et al.  Permeation through a heterogeneous membrane: the effect of the dispersed phase , 1997 .

[171]  T. Chung The limitations of using Flory-Huggins equation for the states of solutions during asymmetric hollow-fiber formation , 1997 .

[172]  W. Koros,et al.  Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles , 1997 .

[173]  Ji-Qin Ni,et al.  New concept for the evaluation of rural biogas management in developing countries , 1996 .

[174]  R. Boom,et al.  Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers , 1996 .

[175]  Tai‐Shung Chung,et al.  A Review of Microporous Composite Polymeric Membrane Technology for Air-Separation , 1996, Engineering Plastics.

[176]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[177]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[178]  A. Corma,et al.  Zeolites and Zeotypes as catalysts , 1995 .

[179]  W. Koros,et al.  Gas transport properties of polymers based on spirobiindane bisphenol , 1995 .

[180]  G. Lipscomb The melt hollow fiber spinning process: steady‐state behavior, sensitivity and stability , 1994 .

[181]  Benny D. Freeman,et al.  Gas separation using polymer membranes: an overview , 1994 .

[182]  Robert Rautenbach,et al.  Treatment of landfill gas by gas permeation : pilot plant results and comparison to alternatives , 1994 .

[183]  H. Kita,et al.  Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone- containing polyimide , 1994 .

[184]  O. Talu,et al.  Effect of cations on methane adsorption by NaY, MgY, CaY, SrY, and BaY zeolites , 1993 .

[185]  C. A. Smolders,et al.  Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents , 1993 .

[186]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[187]  K. Peinemann,et al.  Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation , 1991 .

[188]  Robert F. Hickey,et al.  Monitoring of the anaerobic methane fermentation process , 1990 .

[189]  D. R. Lloyd,et al.  Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation , 1990 .

[190]  M. Donohue,et al.  Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes☆ , 1989 .

[191]  K. Imai,et al.  Synthesis of sulfone-modified poly(vinyl alcohol) and its application for permselective membrane of sulfur dioxide , 1988 .

[192]  E. Sanders Penetrant-induced plasticization and gas permeation in glassy polymers☆ , 1988 .

[193]  D. R. Paul,et al.  Gas permeation in polyethersulfone , 1987 .

[194]  J. Koresh,et al.  Molecular Sieve Carbon Permselective Membrane. Part I. Presentation of a New Device for Gas Mixture Separation , 1983 .

[195]  H. B. Hopfenberg,et al.  Diffusion of organic vapors at low concentrations in glassy PVC, polystyrene, and PMMA , 1982 .

[196]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[197]  J. P. Agrawal,et al.  High flux freeze‐dried cellulose acetate reverse osmosis membranes as microporous barriers in gas permeation and separation , 1970 .

[198]  L. Marton,et al.  Methods of Experimental Physics , 1960 .

[199]  Matthias Wessling,et al.  Transforming biogas into biomethane using membrane technology , 2013 .

[200]  A. Al-Warthan,et al.  Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation , 2012 .

[201]  Anneli Petersson,et al.  Biogas upgrading technologies – developments and innovations , 2010 .

[202]  K. Kayser,et al.  Optimizing biogas yields with substrate selection. , 2009 .

[203]  Nicolas Abatzoglou,et al.  A review of biogas purification processes , 2009 .

[204]  Yiming Cao,et al.  Gas transport properties of 6FDA-TMPDA/MOCA copolyimides , 2008 .

[205]  许旱峤,et al.  Kirk-Othmer Encyclopedia of Chemical Technology数据库介绍及实例 , 2007 .

[206]  Christian Baerlocher,et al.  Atlas of zeolite framework types: Dedicated to Walter M. Meier , 2007 .

[207]  Horst Czichos,et al.  Springer Handbook of Materials Measurement Methods , 2006 .

[208]  Rong Wang,et al.  Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide , 2004 .

[209]  A. Ismail,et al.  Fabrication of carbon membranes for gas separation--a review , 2004 .

[210]  D. Ahn,et al.  CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group , 2003 .

[211]  W. Koros,et al.  Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors , 1994 .

[212]  W. Koros,et al.  Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings , 1991 .

[213]  D. R. Paul,et al.  Gas sorption and transport in polysulfone , 1981 .

[214]  William J. Koros,et al.  The pressure dependence of CO2 sorption and permeation in poly(acrylonitrile) , 1980 .

[215]  A. Soffer,et al.  Study of molecular sieve carbons. Part 2.—Estimation of cross-sectional diameters of non-spherical molecules , 1980 .

[216]  D. R. Paul The Solution-Diffusion Model for Swollen Membranes , 1976 .

[217]  Thomas Graham F.R.S. LXIX. On the absorption and dialytic separation of gases by colloid septa , 1866 .