Enhanced Q-factor in Optimally Coupled Macrocell THz Metamaterials: Effect of Spatial Arrangement

We present a study of a novel coupling scheme based on the use of two traditional single-gap split ring resonators (SRRs) and two asymmetric double-gap split ring resonators (ASRs) that have different spatial arrangements. Each unit cell consists of two resonator elements. In particular, the two-SRR and two-ASR unit cells are arranged in vertical, horizontal, and diagonal configurations to form a terahertz (THz) macrocell in a large metamaterial (MTM) array. Surprisingly, our results show that the diagonal arrangement in both types of resonators exhibits a strong resonance enhancement, leading to significant improvement in the quality factor (Q -factor) of SRRs and ASRs. Numerical simulations reveal stronger currents being excited for the diagonal macrocell of both types of MTM resonators. This observation is mainly due to optimal coupling between the resonators in the diagonal arrangement that causes subradiant scattering and reduced radiation damping. This coupling scheme could be easily implemented in MTMs across most part of the electromagnetic spectrum in order to minimize undesired radiation losses. We further investigate the effect of mutual interaction on the transmission and the Q-factor of the fundamental resonances in three different kinds of spatial arrangements.

[1]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[2]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[3]  H. Moser,et al.  Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. , 2005, Physical review letters.

[4]  Carsten Rockstuhl,et al.  Resonances of split-ring resonator metamaterials in the near infrared , 2006 .

[5]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[6]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[7]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[8]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[9]  G. von Plessen,et al.  Radiation damping in metal nanoparticle pairs. , 2007, Nano letters.

[10]  V. Shalaev Optical negative-index metamaterials , 2007 .

[11]  David J. Edwards,et al.  Coupling mechanisms for split ring resonators: Theory and experiment , 2007 .

[12]  Ajay Nahata,et al.  Transmission resonances through aperiodic arrays of subwavelength apertures , 2007, Nature.

[13]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[14]  I. Al-Naib,et al.  Applying the Babinet principle to asymmetric resonators , 2008 .

[15]  Harald Giessen,et al.  Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules , 2008 .

[16]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[17]  M. Kafesaki,et al.  Multi-gap individual and coupled split-ring resonator structures. , 2008, Optics express.

[18]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[19]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[20]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[21]  Ewold Verhagen,et al.  Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. , 2009, Physical review letters.

[22]  Nikolay I. Zheludev,et al.  Coherent and incoherent metamaterials and order-disorder transitions , 2008, 0809.2361.

[23]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[24]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[25]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[26]  T. Feurer,et al.  Lattice modes mediate radiative coupling in metamaterial arrays. , 2009, Optics express.

[27]  Andreas Tünnermann,et al.  Effective properties of amorphous metamaterials , 2009 .

[28]  Carsten Rockstuhl,et al.  The impact of nearest neighbor interaction on the resonances in terahertz metamaterials , 2009 .

[29]  Ekaterina Shamonina,et al.  Analytical formulation for the resonant frequency of split rings , 2009 .

[30]  Kurt Busch,et al.  Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation. , 2010, Optics express.

[31]  M. S. Wartak,et al.  Negative-permeability electromagnetically induced transparent and magnetically active metamaterials , 2010 .

[32]  Zhen Tian,et al.  Random terahertz metamaterials , 2010 .

[33]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[34]  Carsten Rockstuhl,et al.  Cryogenic temperatures as a path toward high-Q terahertz metamaterials , 2010 .

[35]  Abul K. Azad,et al.  Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials , 2011 .

[36]  D. R. Chowdhury,et al.  Tailored resonator coupling for modifying the terahertz metamaterial response. , 2011, Optics express.

[37]  T. Kampfrath,et al.  Magnetoelectric point scattering theory for metamaterial scatterers , 2010, 1012.3671.

[38]  Martin Koch,et al.  Terahertz metasurfaces with high Q-factors , 2011 .

[39]  A. Bitzer,et al.  Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study. , 2011, Optics express.

[40]  Ajay Nahata,et al.  Planar terahertz waveguides based on complementary split ring resonators. , 2011, Optics express.

[41]  Martin Koch,et al.  Sharp Fano resonances in THz metamaterials. , 2011, Optics express.