Eigenvector dynamics under free addition

We investigate the evolution of a given eigenvector of a symmetric (deterministic or random) matrix under the addition of a matrix in the Gaussian orthogonal ensemble. We quantify the overlap between this single vector with the eigenvectors of the initial matrix and identify precisely a "Cauchy flight" regime. In particular, we compute the local density of this vector in the eigenvalues space of the initial matrix. Our results are obtained in a non-perturbative setting and are derived using the ideas of [O. Ledoit and S. Peche, Eigenvectors of some large sample covariance matrix ensembles, Probab. Theory Related Fields151 (2011) 233]. Finally, we give a robust derivation of a result obtained in [R. Allez and J.-P. Bouchaud, Eigenvector dynamics: General theory and some applications, Phys. Rev. E86 (2012) 046202] to study eigenspace dynamics in a semi-perturbative regime.

[1]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[2]  Philip W. Anderson,et al.  Infrared Catastrophe in Fermi Gases with Local Scattering Potentials , 1967 .

[3]  L. Pastur On the spectrum of random matrices , 1972 .

[4]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[5]  M. Wilkinson Random matrix theory in semiclassical quantum mechanics of chaotic systems , 1988 .

[6]  Wilkinson Diffusion and dissipation in complex quantum systems. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[7]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[8]  Alexandru Nica,et al.  Free random variables , 1992 .

[9]  L. Rogers,et al.  Interacting Brownian particles and the Wigner law , 1993 .

[10]  Zee,et al.  Universal correlations for deterministic plus random Hamiltonians. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  A Brownian motion model for the parameter dependence of matrix elements , 1995 .

[12]  D. Shlyakhtenko Random Gaussian band matrices and freeness with amalgamation , 1996 .

[13]  Emmanuel Cépa,et al.  Diffusing particles with electrostatic repulsion , 1997 .

[14]  P. Biane On the free convolution with a semi-circular distribution , 1997 .

[15]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[16]  Francisco M. Fernández,et al.  Introduction to Perturbation Theory in Quantum Mechanics , 2000 .

[17]  Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe , 2005, cond-mat/0503330.

[18]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[19]  Olivier Ledoit,et al.  Eigenvectors of some large sample covariance matrix ensembles , 2009, 0911.3010.

[20]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[22]  Perturbations of diagonal matrices by band random matrices , 2011, 1104.1983.

[23]  J. Bouchaud,et al.  Eigenvector dynamics: General theory and some applications. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  J. Bouchaud,et al.  Invariant beta ensembles and the Gauss-Wigner crossover. , 2012, Physical review letters.

[25]  Alice Guionnet,et al.  A diffusive matrix model for invariant $\beta$-ensembles , 2012, 1206.1460.