Growth inhibition of Plasmodium falciparum in in vitro cultures by selective action of tryptophan-N-formylated gramicidin incorporated in lipid vesicles.

[1]  B. Roelofsen,et al.  Selective elimination of malaria infected erythrocytes by a modified phospholipase A2 in vitro. , 1990, Biochimica et biophysica acta.

[2]  G. Lopez-Berestein,et al.  Effects of free and liposomal amphotericin B and gramicidin S alone and in combination on potassium leakage from human erythrocytes and Candida albicans , 1989, Antimicrobial Agents and Chemotherapy.

[3]  B. Roelofsen,et al.  Phospholipid uptake by Plasmodium knowlesi infected erythrocytes , 1988, FEBS letters.

[4]  G. Lopez-Berestein,et al.  Synergistic antifungal activity and reduced toxicity of liposomal amphotericin B combined with gramicidin S or NF , 1987, Antimicrobial Agents and Chemotherapy.

[5]  B. de Kruijff,et al.  Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes. , 1987, Biochemistry.

[6]  C. Haest,et al.  Gramicidin-induced enhancement of transbilayer reorientation of lipids in the erythrocyte membrane. , 1987, Biochemistry.

[7]  J. Killian,et al.  Importance of the tryptophans of gramicidin for its lipid structure modulating activity in lysophosphatidylcholine and phosphatidylethanolamine model membranes. A comparative study employing gramicidin analogs and a synthetic alpha-helical hydrophobic polypeptide. , 1987, Biochimica et biophysica acta.

[8]  W. Breuer,et al.  Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: Association with parasite development , 1985, Journal of cellular physiology.

[9]  J. Killian,et al.  The tryptophans of gramicidin are essential for the lipid structure modulating effect of the peptide. , 1985, Biochimica et biophysica acta.

[10]  D. Urry,et al.  Synthesis and characterization of (1-13C) Phe9 gramicidin A. Effects of side chain variations. , 2009, International journal of peptide and protein research.

[11]  D. Busath,et al.  Photolysis of gramicidin A channels in lipid bilayers , 1983 .

[12]  D. Needham,et al.  The effects of bilayer thickness and tension on gramicidin single-channel lifetime. , 1983, Biochimica et biophysica acta.

[13]  J. Haynes,et al.  Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique , 1979, Antimicrobial Agents and Chemotherapy.

[14]  V. Ivanov,et al.  Comparison of the effect of linear gramicidin analogues on bacterial sporulation, membrane permeability, and ribonucleic acid polymerase. , 1979, Biochemistry.

[15]  W. Trager,et al.  Plasmodium falciparum in culture: use of outdated erthrocytes and description of the candle jar method. , 1977, The Journal of parasitology.

[16]  L. Stryer,et al.  The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. , 1977, Journal of molecular biology.

[17]  E. Korn,et al.  Single bilayer liposomes prepared without sonication. , 1973, Biochimica et biophysica acta.

[18]  K. Jacobson,et al.  Solution and interfacial properties of gramicidin pertinent to its effect on membranes. , 1972, Biochimica et biophysica acta.

[19]  I. Sherman,et al.  Alterations in sodium and potassium in red blood cells and plasma during the malaria infection (Plasmodium lophurae). , 1971, Comparative biochemistry and physiology. A, Comparative physiology.

[20]  F. Harold,et al.  Gramicidin, Valinomycin, and Cation Permeability of Streptococcus faecalis , 1967, Journal of bacteriology.

[21]  W. Trager,et al.  The nutrition of an intracellular parasite ( avian malaria ) , 2017 .

[22]  W. Trager STUDIES ON CONDITIONS AFFECTING THE SURVIVAL IN VITRO OF A MALARIAL PARASITE (PLASMODIUM LOPHURAE) , 1941, The Journal of experimental medicine.