Evaluation of missing data imputation in longitudinal cohort studies in breast cancer survival
暂无分享,去创建一个
Paulo J. G. Lisboa | Ana S. Fernandes | José Manuel Fonseca | Chris Bajdik | Elia Biganzoli | Terence A. Etchells | Ian H. Jarman | P. Lisboa | E. Biganzoli | C. Bajdik | I. Jarman | T. Etchells | A. S. Fernandes | J. M. Fonseca
[1] Paulo J. G. Lisboa,et al. A Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer , 2003, Artif. Intell. Medicine.
[2] D. Cox. Regression Models and Life-Tables , 1972 .
[3] Karen A Gelmon,et al. Population-based validation of the prognostic model ADJUVANT! for early breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[4] Douglas G Altman,et al. Developing a prognostic model in the presence of missing data: an ovarian cancer case study. , 2003, Journal of clinical epidemiology.
[5] H. Boshuizen,et al. Multiple imputation of missing blood pressure covariates in survival analysis. , 1999, Statistics in medicine.
[6] Ralph B. D'Agostino,et al. Evaluation of the Performance of Survival Analysis Models: Discrimination and Calibration Measures , 2003, Advances in Survival Analysis.
[7] J. Schafer. Multiple imputation: a primer , 1999, Statistical methods in medical research.
[8] Paulo J. G. Lisboa,et al. Double-blind evaluation and benchmarking of survival models in a multi-centre study , 2007, Comput. Biol. Medicine.
[9] Paulo J. G. Lisboa,et al. Stratification of Severity of Illness Indices: A Case Study for Breast Cancer Prognosis , 2008, KES.
[10] Paulo J. G. Lisboa,et al. A review of evidence of health benefit from artificial neural networks in medical intervention , 2002, Neural Networks.