Enhanced anion binding from unusual coordination modes of bis(thiourea) ligands in platinum group metal complexes.

Treatment of a range of bis(thiourea) ligands with inert organometallic transition-metal ions gives a number of novel complexes that exhibit unusual ligand binding modes and significantly enhanced anion binding ability. The ruthenium(II) complex [Ru(η(6)-p-cymene)(κS,S',N-L(3)-H)](+) (2b) possesses juxtaposed four- and seven-membered chelate rings and binds anions as both 1:1 and 2:1 host guest complexes. The pyridyl bis(thiourea) complex [Ru(η(6)-p-cymeme)(κS,S',N(py)-L(4))](2+) (4) binds anions in both 1:1 and 1:2 species, whereas the free ligand is ineffective because of intramolecular NH⋅⋅⋅N hydrogen bonding. Novel palladium(II) complexes with nine- and ten-membered chelate rings are also reported.

[1]  Julio Pérez,et al.  Metal complexes with two different hydrogen-bond donor ligands as anion hosts. , 2009, Chemical communications.

[2]  R. Vilar,et al.  Di-platinum complexes containing thiolato-urea ligands: structural and anion binding studies. , 2009, Dalton transactions.

[3]  M. Hardie,et al.  Metallo-gels and organo-gels with tripodal cyclotriveratrylene-type and 1,3,5-substituted benzene-type ligands , 2009 .

[4]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2007. , 2009, Chemical Society reviews.

[5]  J. Steed Coordination and organometallic compounds as anion receptors and sensors. , 2009, Chemical Society reviews.

[6]  L. Fabbrizzi,et al.  Anion receptors that contain metals as structural units. , 2009, Chemical communications.

[7]  Julio Pérez,et al.  Stable metal-organic complexes as anion hosts. , 2008, Chemical Society reviews.

[8]  Philip A. Gale,et al.  Metal-organic anion receptors: trans-functionalised platinum complexes. , 2008, Chemical communications.

[9]  M. Boiocchi,et al.  Metal-controlled anion-binding tendencies of the thiourea unit of thiosemicarbazones. , 2008, Chemistry.

[10]  J. Steed,et al.  Anion binding and luminescent sensing using cationic ruthenium(II) aminopyridine complexes. , 2008, Chemistry.

[11]  T. Gunnlaugsson,et al.  Synthesis, Structural and Photophysical Evaluations of Urea Based Fluorescent PET Sensors for Anions , 2008 .

[12]  Julio Pérez,et al.  Organometallic complexes as anion hosts. , 2008, Chemical communications.

[13]  J. Steed,et al.  Anion binding in (arene)ruthenium(II)-based hosts? , 2007, Chemical communications.

[14]  J. Steed,et al.  Crystal Packing in Equilibrating Systems: A Single Crystal Containing Three Isomers of CuCl(1-pyridin-2-yl-3-p-tolyl-thiourea)2 , 2007 .

[15]  J. Steed,et al.  Organometallic cavitands: Cation–π interactions and anion binding via π-metallation , 2007 .

[16]  B. Moyer,et al.  Anion Separation with Metal–Organic Frameworks , 2007 .

[17]  Kiyoshi Sato,et al.  Allosteric anion recognition by metal complexation of tris(bipyridine–imidazolium) ligand , 2007 .

[18]  Ichiro Hisaki,et al.  Synthesis and Anion‐Selective Complexation of Homobenzylic Tripodal Thiourea Derivatives , 2007 .

[19]  M. Mcpartlin,et al.  Ruthenium biimidazole complexes as anion receptors. , 2006, Chemical communications.

[20]  T. Gunnlaugsson,et al.  Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors , 2006 .

[21]  C. Rice,et al.  Metal-assembled anion receptors , 2006 .

[22]  Bradley D. Smith,et al.  Anion recognition using dimetallic coordination complexes , 2006 .

[23]  S. Adhikari,et al.  Colorimetric and fluorescence sensing of anions using thiourea based coumarin receptors , 2006 .

[24]  Y. Yen,et al.  Development of colorimetric receptors for selective discrimination between isomeric dicarboxylate anions , 2006 .

[25]  Se Jin Lee,et al.  Urea/thiourea-based colorimetric chemosensors for the biologically important ions : efficient and simple sensors , 2006 .

[26]  Naomi A. Lewcenko,et al.  Fluorescent anion sensors based on 4-amino-1,8-naphthalimide that employ the 4-amino N–H , 2006 .

[27]  Philip A. Gale,et al.  Pyrrolylamidourea based anion receptors , 2006 .

[28]  S. Bellemin‐Laponnaz,et al.  Synthesis and structural chemistry of arene-ruthenium half-sandwich complexes bearing an oxazolinyl–carbene ligand , 2006 .

[29]  M. Licchelli,et al.  What anions do to N-H-containing receptors. , 2006, Accounts of chemical research.

[30]  Philip A. Gale,et al.  Carboxylate complexation by a family of easy-to-make ortho-phenylenediamine based bis-ureas: studies in solution and the solid state , 2006 .

[31]  E. Tiekink,et al.  Synthesis, characterisation, supramolecular aggregation and biological activity of phosphine gold(I) complexes with monoanionic thiourea ligands , 2006 .

[32]  B. Moyer,et al.  Anion Coordination in Metal−Organic Frameworks Functionalized with Urea Hydrogen-Bonding Groups , 2006 .

[33]  Philip A. Gale Special issue: Anion coordination chemistry II - Preface , 2006 .

[34]  T. Gunnlaugsson,et al.  Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate. , 2005, Organic & biomolecular chemistry.

[35]  T. Gunnlaugsson,et al.  Anion recognition using preorganized thiourea functionalized [3]polynorbornane receptors. , 2005, Organic letters.

[36]  Philip A. Gale,et al.  ortho-Phenylenediamine bis-urea–carboxylate: a new reliable supramolecular synthon , 2005 .

[37]  A. White,et al.  A di-palladium urea complex as a molecular receptor for anions. , 2005, Chemical communications.

[38]  T. Gunnlaugsson,et al.  4-Amino-1,8-naphthalimide-based anion receptors: employing the naphthalimide N–H moiety in the cooperative binding of dihydrogenphosphate , 2005 .

[39]  Amitava Das,et al.  Urea and thiourea based efficient colorimetric sensors for oxyanions , 2005 .

[40]  J. Steed,et al.  Anion and cation binding by a pendant arm cyclam and its macrobicyclic derivatives. , 2005, Dalton transactions.

[41]  M. Licchelli,et al.  Why, on interaction of urea-based receptors with fluoride, beautiful colors develop. , 2005, The Journal of organic chemistry.

[42]  V. John,et al.  Urea and thiourea derivatives as low molecular-mass organogelators. , 2005, Chemistry.

[43]  Maurizio Licchelli,et al.  Urea vs. thiourea in anion recognition. , 2005, Organic & biomolecular chemistry.

[44]  H. Tian,et al.  A highly selective chromogenic and fluorogenic chemosensor for fluoride ion , 2005 .

[45]  P. Beer,et al.  Anion Sensing by Metal-Based Receptors , 2005 .

[46]  E. Monzani,et al.  Anion-induced urea deprotonation. , 2005, Chemistry.

[47]  J. Steed,et al.  The R21(6) hydrogen-bonded synthon in neutral urea and metal-bound halide systems , 2004 .

[48]  Z. Wen,et al.  Ratiometric dual fluorescent receptors for anions under intramolecular charge transfer mechanism , 2004 .

[49]  Z. Li,et al.  Development of N-benzamidothioureas as a new generation of thiourea-based receptors for anion recognition and sensing. , 2004, The Journal of organic chemistry.

[50]  David J. Williams,et al.  Anion-templated synthesis of metallacages as a means for the colorimetric detection of chlorides. , 2004, Inorganic chemistry.

[51]  T. Gunnlaugsson,et al.  Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. , 2004, Organic & biomolecular chemistry.

[52]  L. Meng,et al.  Calix[4]arenes containing thiourea and amide moieties: neutral receptors towards α,ω-dicarboxylate anions , 2004 .

[53]  Philip A. Gale,et al.  Metal-organic anion receptors: arranging urea hydrogen-bond donors to encapsulate sulfate ions. , 2004, Journal of the American Chemical Society.

[54]  Z. Trávníček,et al.  [N,N'-Bis(3-aminopropyl)ethylenediamine-kappa4N,N',N",N"'](trithiocyanurato-kappa2N,S)zinc(II) ethanol solvate. , 2003, Acta crystallographica. Section C, Crystal structure communications.

[55]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[56]  T. Gunnlaugsson,et al.  Dual responsive chemosensors for anions: the combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule , 2003 .

[57]  Cheryl Hogue,et al.  COVER STORY: ROCKET-FUELED RIVERLower Colorado carries perchlorate to millions who drink its water, to those who eat lettuce irrigated with its water, and into a tribal well , 2003 .

[58]  J. Steed Should solid-state molecular packing have to obey the rules of crystallographic symmetry? , 2003 .

[59]  A. Hamilton,et al.  Macrocyclic anion receptors based on directed hydrogen bonding interactions , 2003 .

[60]  P. Beer,et al.  Transition metal and organometallic anion complexation agents , 2003 .

[61]  W. Henderson,et al.  Platinum(II), palladium(II) and gold(III) complexes containing 1,1,4-trisubstituted thiosemicarbazide dianion ligands , 2003 .

[62]  Karl J. Wallace,et al.  Oxo-anion binding by metal containing molecular 'clefts' , 2003 .

[63]  Cheryl Hogue,et al.  Environmental pollution: Rocket-fueled river , 2003 .

[64]  Leonard J. Barbour,et al.  Molecular Graphics: From Science to Art , 2003 .

[65]  Jong‐In Hong,et al.  A new fluorescent fluoride chemosensor based on conformational restriction of a biaryl fluorophore , 2002 .

[66]  J. Atwood,et al.  Extraction of pertechnetate and perrhenate from water with deep-cavity [CpFe(arene)](+)-derivatized cyclotriveratrylenes. , 2002, Inorganic chemistry.

[67]  M. Dinger,et al.  Thiourea monoanion and dianion complexes of rhodium(III) and ruthenium(II) , 2002 .

[68]  Zhao Li,et al.  A novel thiourea-based dual fluorescent anion receptor with a rigid hydrazine spacer. , 2002, Organic letters.

[69]  Philip A. Gale,et al.  Amido complexes of platinum(II) as receptors for the nitrate ion , 2002 .

[70]  T. Gunnlaugsson,et al.  Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors , 2001 .

[71]  S. Sasaki,et al.  Design and synthesis of preorganized tripodal fluororeceptors based on hydrogen bonding of thiourea groups for optical phosphate ion sensing , 2001 .

[72]  N. Teramae,et al.  Facilitated Transfer of Hydrophilic Anions across the Nitrobenzene-Water Interface by a Hydrogen-Bonding Ionophore: Applicability for Multianalyte Detection , 2001 .

[73]  Leonard J. Barbour,et al.  X-Seed — A Software Tool for Supramolecular Crystallography , 2001 .

[74]  Philip A. Gale,et al.  Erkennung und Nachweis von Anionen: gegenwärtiger Stand und Perspektiven , 2001 .

[75]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[76]  J. I. Hong,et al.  An azophenol-based chromogenic anion sensor. , 2001, Organic letters.

[77]  V. McKee,et al.  Selectivity for dinegative versus mononegative oxoanionic guests within a cryptand host , 2001 .

[78]  Philip A. Gale,et al.  Platinum(II) nicotinamide complexes as receptors for oxo-anions , 2001 .

[79]  J. Steed,et al.  N , N ′-Diphenylthioureido complexes of ruthenium, osmium and iridium , 2000 .

[80]  Jong‐In Hong,et al.  C3-Symmetric metacyclophane-based anion receptors with three thiourea groups as linkers between aromatic groups , 2000 .

[81]  Mizuno,et al.  Synthesis and anion-selective complexation of cyclophane-based cyclic thioureas , 2000, The Journal of organic chemistry.

[82]  M. Coleman,et al.  Platinum thiosemicarbazide and thiourea complexes: the crystal structure of [PtCl(dppe){SC(NHMe)NHNMe2-S}](PF6) and the influence of intramolecular hydrogen bonding on ligand co-ordination mode , 1999 .

[83]  K. Xiao,et al.  Ion-Channel-Mimetic Sensing of Hydrophilic Anions Based on Monolayers of a Hydrogen Bond-Forming Receptor , 1999 .

[84]  P. Beer,et al.  Cooperative halide, perrhenate anion–sodium cation binding and pertechnetate extraction and transport by a novel tripodal tris(amido benzo-15-crown-5) ligand , 1999 .

[85]  V. Anand,et al.  A New Route for the Synthesis of 2-Mercapto Benzimidazoles , 1999 .

[86]  Chick C. Wilson,et al.  When is a polymorph not a polymorph? Helical trimeric O–H···O synthons in trans-1,4-diethynylcyclohexane-1,4-diol , 1999 .

[87]  Kaixian Chen,et al.  Syntheses, crystal structures and properties of Zn(II) and Cd(II) complexes derived from N-(o-nitrophenyl)-N′-(methoxycarbonyl) thiourea(H2omt) and 2,2′-bipyridine(bpy) or o-phenanthroline(phen) , 1998 .

[88]  T. Hayashita,et al.  Anion Sensing by a Thiourea Based Chromoionophore via Hydrogen Bonding , 1998 .

[89]  David J. Williams,et al.  Anion Control in the Self-Assembly of a Cage Coordination Complex. , 1998, Angewandte Chemie.

[90]  David J. Williams,et al.  Anionenunterstützte Selbstorganisation einer käfigartigen Koordinationsverbindung , 1998 .

[91]  K. Xiao,et al.  Application of a bis-thiourea ionophore for an anion selective electrode with a remarkable sulfate selectivity , 1998 .

[92]  Keiji Hirose,et al.  Novel Self-Assembly of m-Xylylene Type Dithioureas by Head-to-Tail Hydrogen Bonding. , 1997, The Journal of organic chemistry.

[93]  H. Kaneda,et al.  Anion sensing by a donor–spacer–acceptor system: an intra-molecular exciplex emission enhanced by hydrogen bond-mediated complexation , 1998 .

[94]  K. Xiao,et al.  Strong hydrogen bond-mediated complexation of H2PO4− by neutral bis-thiourea hosts , 1997 .

[95]  L. Hansen,et al.  Synthesis and Characterization of Rhenium(V) Oxo Complexes with a New Thiol-Amide-Thiourea Ligand System. X-ray Crystal Structure of [1-Phenyl-3-[2-((2-thioacetyl)amino)ethyl]thioureato]oxorhenium(V). , 1996, Inorganic Chemistry.

[96]  L. Hansen,et al.  Rhenium(V) Oxo Complexes of Novel N(2)S(2) Dithiourea (DTU) Chelate Ligands: Synthesis and Structural Characterization. , 1996, Inorganic chemistry.

[97]  P. Gans,et al.  Nuclear magnetic resonance as a tool for determining protonation constants of natural polyprotic bases in solution. , 1995, Analytical biochemistry.

[98]  P. Bühlmann,et al.  Anion recognition by urea and thiourea groups: Remarkably simple neutral receptors for dihydrogenphosphate , 1995 .

[99]  Raymond E. Davis,et al.  Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals , 1995 .

[100]  Liat Shimoni,et al.  Muster aus H‐Brücken: ihre Funktionalität und ihre graphentheoretische Analyse in Kristallen , 1995 .

[101]  R. Ostrander,et al.  Synthesis and Electrochemistry of Mo[BH(Me2pz)3](NO)[S(CH2)2CONH(CH2)2S]* as a Probe of the Effects of N-H⋯S Hydrogen Bonding on Redox Potentials , 1995 .

[102]  J. Steed,et al.  ORGANOMETALLIC THIOL AND THIOLATO COMPLEXES OF RUTHENIUM(IV) , 1994 .

[103]  R. D. Adams,et al.  Partial oxidation of the triosmium cluster complex Os3(CO)10[.mu.-(SCH2CMe2CH2)3] with ferrocenium ion , 1993 .

[104]  A. Hamilton,et al.  Molecular recognition: hydrogen-bonding receptors that function in highly competitive solvents , 1993 .

[105]  K. Isobe,et al.  Novel Bis(triphenylphosphine)platinum(II) Complexes Containing a Thiourea or a 1,3-Diethylthiourea Dianion as an N,S-Chelating Ligand , 1992 .

[106]  J. Fawcett,et al.  Thiadiazatrimethylenemethane and N,N′,P-triphenylphosphonothioic diamide complexes of platinum(II) , 1992 .

[107]  S. Mandal,et al.  Diastereoisomeric (η6-arene)ruthenium(II) chiral Schiff base complexes: crystal structure of a triphenylphosphine adduct , 1991 .

[108]  I. Dance The structural chemistry of metal thiolate complexes , 1986 .

[109]  D. Griffiths,et al.  The chemistry of o-phenylene di-isothiocyanate. Part 1. Some reactions with N-nucleophiles , 1980 .

[110]  M. Churchill,et al.  Crystal structure and molecular geometry of homogeneous hydrogenation catalyst .mu.-chloro-.mu.-hydrido-dichlorobis(pentamethylcyclopentadienyl)diiridium(III) and of its di-.mu.-chloro-dichlorobis- precursor. Direct comparison of .mu.-hydrido-.mu.-chloro-diiridium and di-.mu.-chloro-diiridium bridgi , 1977 .

[111]  Anthony K. Smith,et al.  Arene ruthenium(II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium(III) trichloride , 1974 .

[112]  P. Maitlis,et al.  Pentamethylcyclopentadienylrhodium and -iridium halides. I. Synthesis and properties , 1969 .

[113]  R. Walton The infra-red spectra of complexes of palladium (II) and platinum (II) halides with methyl phenyl cyanides , 1965 .