Impact of Ce doping on the optoelectronic and structural properties of a CsPbIBr2 perovskite solar cell.

This paper provides a detailed analysis of pure CsPbIBr2 and 4% Ce-doped CsPbIBr2 perovskite films, emphasizing their structural, optical and photovoltaic properties. X-ray diffraction confirms a predominant cubic perovskite phase in both samples, with Ce doping leading to the increased crystal size (21 nm to 32 nm). UV-vis spectroscopy reveals a reduced bandgap energy (2.2 eV to 2.1 eV) with Ce doping. Dielectric constant analysis indicates the enhanced permittivity of the Ce-doped sample, crucial for solar-cell light trapping. Energy band structure analysis demonstrates improved photovoltaic cell performance with Ce doping, yielding higher open-circuit voltage, short-circuit current, and efficiency (9.71%) compared to pure CsPbIBr2 (8.02%). Ce doping mitigates electron-hole recombination, enhancing cell stability, electron affinity, and power output. This research underscores the potential of cost-effective, efficient, and stable CsPbIBr2 perovskite solar cells.

[1]  M. Fatima,et al.  Revolutionizing perovskite solar cells: Enhancing current density through Zr doping in MAPbBr3 to engineer shifted band gap edges near the electron transport layer , 2023, Optical Materials.

[2]  S. Hussain,et al.  Tungsten dopant incorporation for bandgap and type engineering of perovskite crystals , 2023, Physica Scripta.

[3]  N. Ahmad,et al.  Efficiency enhancement of perovskite-sensitized solar cell based on electrospun titania nanofibers coated in organic-inorganic hybrid metal trihalide nanocrystals , 2023, Optical Materials.

[4]  Kang-Hoon Choi,et al.  Indoloindole‐Based Hole Transporting Material for Efficient and Stable Perovskite Solar Cells Exceeding 24% Power Conversion Efficiency , 2023, Advanced Energy Materials.

[5]  Yongrui Yang,et al.  Volatile Dual-Solvent Assisted Intermediate Phase Regulation for Anti-Solvent-Free Perovskite Photovoltaics. , 2023, Angewandte Chemie.

[6]  Jun Chen,et al.  Surface Passivation of Organic-Inorganic Hybrid Perovskites with Methylhydrazine Iodide for Enhanced Photovoltaic Device Performance , 2023, Inorganics.

[7]  Yongqi Yin,et al.  Metal-Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives. , 2023, Small.

[8]  S. Hussain,et al.  Tuning the band gap edges of perovskite material by Cd doping for achieving high current density in perovskite solar cells , 2023, Ceramics International.

[9]  Yurong Zhou,et al.  Cerium-Doped Indium Oxide as a Top Electrode of Semitransparent Perovskite Solar Cells. , 2023, ACS applied materials & interfaces.

[10]  S. Liu,et al.  One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells , 2023, Nature Communications.

[11]  P. Shirage,et al.  Lead Metal Halide Perovskite Solar Cells: Fabrication, Advancement Strategies, Alternatives, and Future perspectives , 2023, Materials Today Communications.

[12]  N. Alwadai,et al.  Tailoring the structural, optical, photoluminescence, dielectric and electrical properties of Zn0.6Ni0.2Mg0.2Fe2-xLaxO4 (x = 0.00, 0.0125, 0.0250, 0.0375) , 2023, Journal of Materials Research and Technology.

[13]  S. Hussain,et al.  700 keV Au ions beam effect on the structural, optical and photovoltaic properties of MAPbI3 solar cells , 2022, Ceramics International.

[14]  B. Lawrie,et al.  Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites , 2022, Nature Communications.

[15]  S. Hussain,et al.  The Effect of 600 keV Ag Ion Irradiation on the Structural, Optical, and Photovoltaic Properties of MAPbBr3 Films for Perovksite Solar Cell Applications , 2022, Materials.

[16]  S. Hussain,et al.  Investigations the structural, optical and photovoltaic properties of La doped TiO2 photoanode based dye sensitized solar cells , 2021, Optical Materials.

[17]  Lei Tao,et al.  In situ nanocrystal seeding perovskite crystallization toward high-performance solar cells , 2021, Materials Today Energy.

[18]  Yongqi Yin,et al.  Stable and Efficient Tin-Based Perovskite Solar Cell via Semiconducting–Insulating Structure , 2020 .

[19]  Jia Zhu,et al.  All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant , 2020, Nature Energy.

[20]  Yongzhen Wu,et al.  Charge-transport layer engineering in perovskite solar cells. , 2020, Science bulletin.

[21]  A. Akter,et al.  Influence of Mn2+ substitution on structural, morphological, electrical, and magnetic properties of Ba0.4Ca0.4Sr0.2MnxTi1−xO3 perovskites , 2020 .

[22]  Badal H. Elias,et al.  Structural, Electronic and Optical Properties of Cubic Perovskite Cspbx3 (X= Br, Cl and I) , 2020, Science Journal of University of Zakho.

[23]  Do‐Heyoung Kim,et al.  Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery , 2019, Nano-Micro Letters.

[24]  G. Hodes,et al.  All-Inorganic CsPbX3 Perovksite Solar Cells: Progress and Prospects. , 2019, Angewandte Chemie.

[25]  W. S. Subhani,et al.  Goldschmidt-rule-deviated perovskite CsPbIBr2by barium substitution for efficient solar cells , 2019, Nano Energy.

[26]  Y. Hao,et al.  Aged Precursor Solution toward Low-Temperature Fabrication of Efficient Carbon-Based All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells , 2018, ACS Applied Energy Materials.

[27]  T. Sakurai,et al.  Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells , 2018, Advanced Materials Interfaces.

[28]  Ruifeng Zhang,et al.  Highly Air-Stable Carbon-Based α-CsPbI3 Perovskite Solar Cells with a Broadened Optical Spectrum , 2018, ACS Energy Letters.

[29]  Yanrong Wang,et al.  CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. , 2017, Journal of the American Chemical Society.

[30]  Fuzhi Huang,et al.  Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells , 2017 .

[31]  M. A. Malik,et al.  Enhanced photocatalytic activity of water stable hydroxyl ammonium lead halide perovskites , 2017 .

[32]  Yang Yang,et al.  Make perovskite solar cells stable , 2017, Nature.

[33]  Hung‐Yu Lin,et al.  All‐Vacuum‐Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11% , 2017, Advanced materials.

[34]  M. A. Malik,et al.  Controlled synthesis of all inorganic CsPbBr2I perovskite by non-template and aerosol assisted chemical vapour deposition , 2017 .

[35]  K. Stevenson,et al.  Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2. , 2017, The journal of physical chemistry letters.

[36]  M. Wasielewski,et al.  Importance of Reducing Vapor Atmosphere in the Fabrication of Tin-Based Perovskite Solar Cells. , 2017, Journal of the American Chemical Society.

[37]  A. Alivisatos,et al.  Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. , 2016, Journal of the American Chemical Society.

[38]  M. Green,et al.  CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition , 2016 .

[39]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[40]  M. Green,et al.  Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation , 2016 .

[41]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[42]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[43]  Su-Huai Wei,et al.  Anomalous Alloy Properties in Mixed Halide Perovskites. , 2014, The journal of physical chemistry letters.

[44]  Jin Young Kim,et al.  Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .

[45]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[46]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[47]  A. Verma,et al.  Lattice constant of cubic perovskites , 2009 .