Bifurcations and Exact Solutions of a Modulated Equation in a Discrete Nonlinear Electrical Transmission Line (II)

In this paper, we consider a model which is the modulated equation in a discrete nonlinear electrical transmission line. This model is an integrable planar dynamical system having three singular straight lines. By using the theory of singular systems and investigating the dynamical behavior, we obtain bifurcations of the phase portraits of the system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (including smooth solitary wave and periodic wave solutions, periodic cusp wave solutions) under different parameter conditions.