Mutual Exclusion with O(log^2 Log n) Amortized Work

This paper presents a new algorithm for mutual exclusion in which each passage through the critical section costs amortized O(log^2 log n) RMRs with high probability. The algorithm operates in a standard asynchronous, local spinning, shared memory model with an oblivious adversary. It guarantees that every process enters the critical section with high probability. The algorithm achieves its efficient performance by exploiting a connection between mutual exclusion and approximate counting.

[1]  Danny Hendler,et al.  Tight RMR lower bounds for mutual exclusion and other problems , 2008, STOC '08.

[2]  James H. Anderson,et al.  An improved lower bound for the time complexity of mutual exclusion , 2001, PODC '01.

[3]  Hagit Attiya,et al.  Lower bounds for randomized consensus under a weak adversary , 2008, PODC '08.

[4]  Danny Hendler,et al.  Randomized mutual exclusion in O(log N / log log N) RMRs , 2009, PODC '09.

[5]  Nancy A. Lynch,et al.  An Ω (n log n) lower bound on the cost of mutual exclusion , 2006, PODC '06.

[6]  James H. Anderson,et al.  A fast, scalable mutual exclusion algorithm , 1995, Distributed Computing.

[7]  N. S. Barnett,et al.  Private communication , 1969 .

[8]  James H. Anderson,et al.  Nonatomic mutual exclusion with local spinning , 2002, PODC '02.

[9]  Michael A. Bender,et al.  Efficient low-contention asynchronous consensus with the value-oblivious adversary scheduler , 2004, Distributed Computing.

[10]  Wojciech M. Golab,et al.  Constant-RMR implementations of CAS and other synchronization primitives using read and write operations , 2007, PODC '07.

[11]  James Aspnes,et al.  Approximate shared-memory counting despite a strong adversary , 2009, TALG.

[12]  Òòòðð,et al.  Shared-memory Mutual Exclusion: Major Research Trends Since 1986 , 1986 .

[13]  Hagit Attiya,et al.  Max registers, counters, and monotone circuits , 2009, PODC '09.

[14]  James H. Anderson,et al.  Fast and Scalable Mutual Exclusion , 1999, DISC.

[15]  G. S. Graham A New Solution of Dijkstra ' s Concurrent Programming Problem , 2022 .

[16]  Edsger W. Dijkstra,et al.  Solution of a problem in concurrent programming control , 1965, CACM.

[17]  James H. Anderson,et al.  A Time Complexity Bound for Adaptive Mutual Exclusion , 2001, DISC.

[18]  Danny Hendler,et al.  Adaptive randomized mutual exclusion in sub-logarithmic expected time , 2010, PODC.

[19]  James H. Anderson,et al.  Nonatomic mutual exclusion with local spinning , 2002, PODC.

[20]  Wojciech M. Golab,et al.  Linearizable implementations do not suffice for randomized distributed computation , 2011, STOC '11.