Prospects of probing dark matter condensates with gravitational waves

The Lambda-Cold Dark Matter model explains cosmological observations most accurately till date. However, it is still plagued with various shortcomings at galactic scales. Models of dark matter such as superfluid dark matter, Bose-Einstein Condensate(BEC) dark matter and fuzzy dark matter have been proposed to overcome some of these drawbacks. In this work, we probe these models using the current constraint on the gravitational wave (GW) propagation speed coming from the binary neutron star GW170817 detection by LIGO-Virgo detector network and use it to study the allowed parameter space for these three models for Advanced LIGO+Virgo, LISA, IPTA and SKA detection frequencies. The speed of GW has been shown to depend upon the refractive index of the medium, which in turn, depends on the dark matter model parameters through the density profile of the galactic halo. We constrain the parameter space for these models using the bounds coming from GW speed measurement and the Milky Way radius bound. Our findings suggest that with Advanced LIGO-Virgo detector sensitivity, the three models considered here remain unconstrained. A meaningful constraint can only be obtained for detection frequencies ≤ 10-9 Hz, which falls in the detection range of radio telescopes such as IPTA and SKA. Considering this best possible case, we find that out of the three condensate models, the fuzzy dark matter model is the most feasible scenario to be falsified/validated in near future.

[1]  J. Bustillo,et al.  Searching for vector boson-star mergers within LIGO-Virgo intermediate-mass black-hole merger candidates , 2022, 2206.02551.

[2]  G. Montani,et al.  Linear analysis of the gravitational beam–plasma instability , 2022, The European Physical Journal C.

[3]  M. J. Williams,et al.  Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run , 2021, 2105.13085.

[4]  G. Montani,et al.  The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas , 2021, Universe.

[5]  J. Bustillo,et al.  GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of 8.7×10^{-13}  eV. , 2021, Physical review letters.

[6]  T. Harko,et al.  Testing Bose–Einstein condensate dark matter models with the SPARC galactic rotation curves data , 2020, The European Physical Journal C.

[7]  G. Montani,et al.  Gravitational Landau damping for massive scalar modes , 2020, The European Physical Journal C.

[8]  H. Arnold,et al.  Virgo , 2020, The Photographic Atlas of the Stars.

[9]  S. Rahvar,et al.  Constraint on the mass of fuzzy dark matter from the rotation curve of the Milky Way , 2020, 2001.04454.

[10]  D. Mota,et al.  Growth of linear perturbations in a universe with superfluid dark matter , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  Hsi-Yu Schive,et al.  Testing the Prediction of Fuzzy Dark Matter Theory in the Milky Way Center , 2020, The Astrophysical Journal.

[12]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[13]  P. Chavanis Core mass-halo mass relation of bosonic and fermionic dark matter halos harboring a supermassive black hole , 2019, Physical Review D.

[14]  S. Rahvar,et al.  Investigation of two colliding solitonic cores in fuzzy dark matter models , 2019, Physical Review D.

[15]  R. Easther,et al.  The core-cusp problem revisited: ULDM vs. CDM , 2019, Publications of the Astronomical Society of Australia.

[16]  G. Bertone,et al.  Gravitational wave probes of dark matter: challenges and opportunities , 2019, SciPost Physics Core.

[17]  G. Desvignes,et al.  The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[19]  H. Grote,et al.  Novel signatures of dark matter in laser-interferometric gravitational-wave detectors , 2019, Physical Review Research.

[20]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[21]  A. Lewis,et al.  Primordial Black Hole Dark Matter: LISA Serendipity. , 2018, Physical review letters.

[22]  P. Chavanis Predictive model of BEC dark matter halos with a solitonic core and an isothermal atmosphere , 2018, Physical Review D.

[23]  V. Sreenath Spherical collapse of fuzzy dark matter , 2018, Physical Review D.

[24]  J. García-Bellido,et al.  Black holes, gravitational waves and fundamental physics: a roadmap , 2018, Classical and Quantum Gravity.

[25]  G. Montani,et al.  Modified gravitational waves across galaxies from macroscopic gravity , 2018, Physical Review D.

[26]  M. Amin,et al.  Gravitational wave emission from collisions of compact scalar solitons , 2018, Physical Review D.

[27]  Sunghoon Jung,et al.  Gravitational-Wave Fringes at LIGO: Detecting Compact Dark Matter by Gravitational Lensing. , 2017, Physical review letters.

[28]  Matthew Kerr,et al.  Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter , 2018, Physical Review D.

[29]  L. Randall What Is Dark Matter? , 2018, Nature.

[30]  D. Spergel,et al.  Chiral gravitational waves and baryon superfluid dark matter , 2018, 1801.07255.

[31]  J. Khoury,et al.  Phenomenological consequences of superfluid dark matter with baryon-phonon coupling , 2017, Journal of Cosmology and Astroparticle Physics.

[32]  Richard Woodard,et al.  GW170817 falsifies dark matter emulators , 2017, 1710.06168.

[33]  R. Cai,et al.  Gravitational wave as probe of superfluid dark matter , 2017, 1710.02425.

[34]  J. Khoury,et al.  Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions , 2017, 1712.01316.

[35]  C. Palenzuela,et al.  arXiv : Gravitational Wave Signatures of Highly Compact Boson Star Binaries , 2017, 1710.09432.

[36]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[37]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[38]  M. Raidal,et al.  Gravitational waves from primordial black hole mergers , 2017, 1707.01480.

[39]  E. Kovetz Probing Primordial Black Hole Dark Matter with Gravitational Waves. , 2017, Physical review letters.

[40]  S. B. Gudennavar,et al.  Dark matter, dark energy, and alternate models: A review , 2017, 1704.06155.

[41]  L. Kelley,et al.  The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays , 2017, 1702.02180.

[42]  A. Paredes,et al.  Spatial solitons in thermo-optical media from the nonlinear Schrödinger-Poisson equation and dark-matter analogs , 2017, 1703.09095.

[43]  P. Shapiro,et al.  Bose-Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: New cosmological constraints and its detectability by LIGO , 2016, 1611.07961.

[44]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[45]  A. Su'arez,et al.  Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction , 2016, 1608.08624.

[46]  M. Lindner,et al.  Gravitational waves as a new probe of Bose–Einstein condensate Dark Matter , 2016, 1609.03939.

[47]  Y. Sofue Rotation and Mass in the Milky Way and Spiral Galaxies , 2016, 1608.08350.

[48]  Gerard Lynskey,et al.  Too big to fail? , 2016, 2016 IEEE-IAS/PCA Cement Industry Technical Conference.

[49]  D. Spergel,et al.  Ultra-light dark matter in ultra-faint dwarf galaxies , 2016, 1603.07321.

[50]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[51]  G. Lewis,et al.  Investigating dark matter substructure with pulsar timing – I. Constraints on ultracompact minihaloes , 2015, 1509.02938.

[52]  G. Lewis,et al.  Investigating dark matter substructure with pulsar timing – II. Improved limits on small-scale cosmology , 2015, 1509.02941.

[53]  J. Khoury,et al.  Dark matter superfluidity and galactic dynamics , 2015, 1506.07877.

[54]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XIV . Dark energy and modified gravity , 2016 .

[55]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[56]  Tzihong Chiueh,et al.  CONTRASTING GALAXY FORMATION FROM QUANTUM WAVE DARK MATTER, ψDM, WITH ΛCDM, USING PLANCK AND HUBBLE DATA , 2015, 1508.04621.

[57]  J. Khoury,et al.  Theory of dark matter superfluidity , 2015, 1507.01019.

[58]  G. Bertone,et al.  Supplementary Information for Evidence for dark matter in the inner Milky Way , 2015 .

[59]  J. Garc'ia-Bellido,et al.  Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies , 2015, 1501.07565.

[60]  Daniel Grin,et al.  A search for ultralight axions using precision cosmological data , 2014, 1410.2896.

[61]  A. Mukherjee,et al.  Observational constraints on spinning, relativistic Bose-Einstein condensate stars , 2014, 1409.6490.

[62]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[63]  L. Shao,et al.  Gravitational wave astronomy with the SKA , 2014, 1501.00127.

[64]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[65]  Tzihong Chiueh,et al.  Understanding the core-halo relation of quantum wave dark matter from 3D simulations. , 2014, Physical review letters.

[66]  T. Broadhurst,et al.  Cosmic structure as the quantum interference of a coherent dark wave , 2014, Nature Physics.

[67]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[68]  V. Rubakov,et al.  Pulsar timing signal from ultralight scalar dark matter , 2013, 1309.5888.

[69]  V. Cardoso,et al.  INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER , 2013, 1302.2646.

[70]  A. Su'arez,et al.  A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model , 2013, 1302.0903.

[71]  X. Y. Li,et al.  Condensate dark matter stars , 2012, 1205.2932.

[72]  Eniko J. M. Madarassy,et al.  Finite temperature effects in Bose-Einstein condensed dark matter halos , 2011, 1110.2829.

[73]  T. Harko,et al.  Bose-Einstein Condensate general relativistic stars , 2011, 1108.3986.

[74]  S. McGaugh,et al.  THE BARYONIC TULLY–FISHER RELATION OF GAS-RICH GALAXIES AS A TEST OF ΛCDM AND MOND , 2011, 1107.2934.

[75]  P. Chavanis Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter , 2011, 1103.2698.

[76]  M. Boylan-Kolchin,et al.  The Milky Way’s bright satellites as an apparent failure of ΛCDM , 2011, 1111.2048.

[77]  J. Peñarrubia,et al.  A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES , 2011, 1108.2404.

[78]  P. Chavanis Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results , 2011, 1103.2050.

[79]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[80]  T. Harko Evolution of cosmological perturbations in Bose–Einstein condensate dark matter , 2011, 1101.3655.

[81]  Jean-Philippe Uzan,et al.  Varying Constants, Gravitation and Cosmology , 2010, Living reviews in relativity.

[82]  D. Minic,et al.  Cold dark matter with MOND scaling , 2010, 1005.3537.

[83]  E. Linder Einstein's other gravity and the acceleration of the Universe , 2010, 1005.3039.

[84]  B. Kain,et al.  Vortices in Bose-Einstein condensate dark matter , 2010, 1004.4692.

[85]  Jae-weon Lee,et al.  Minimum mass of galaxies from BEC or scalar field dark matter , 2008, 0812.1342.

[86]  The VIRGO Collaboration , 2010 .

[87]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[88]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[89]  P. Sikivie,et al.  Bose-Einstein condensation of dark matter axions. , 2009, Physical review letters.

[90]  L. Sindoni,et al.  Reconciling MOND and dark matter , 2008, 0811.3143.

[91]  C. Boehmer,et al.  Can dark matter be a Bose–Einstein condensate? , 2007, 0705.4158.

[92]  J. Fry,et al.  Probing dark matter substructure with pulsar timing , 2007, astro-ph/0702546.

[93]  E. Elizalde,et al.  Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem , 2005, hep-th/0601008.

[94]  L. Amendola,et al.  Dark matter from an ultra-light pseudo-Goldsone-boson , 2005, hep-ph/0509257.

[95]  J. Brownstein,et al.  Galaxy Rotation Curves without Nonbaryonic Dark Matter , 2005, astro-ph/0506370.

[96]  John G. Barrow Varying constants , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[97]  S. Carroll,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[98]  J. Lesgourgues,et al.  Quintessential halos around galaxies , 2001, astro-ph/0105564.

[99]  T. Matos,et al.  Further analysis of a cosmological model with quintessence and scalar dark matter , 2000, astro-ph/0006024.

[100]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[101]  J. Goodman Repulsive dark matter , 2000, astro-ph/0003018.

[102]  P. Peebles,et al.  Fluid Dark Matter , 2000, The Astrophysical journal.

[103]  S. Sin Late time cosmological phase transition and galactic halo as Bose liquid , 1992, hep-ph/9205208.

[104]  Sin Late-time phase transition and the galactic halo as a Bose liquid. , 1994, Physical review. D, Particles and fields.

[105]  W. Press,et al.  Single mechanism for generating large-scale structure and providing dark missing matter. , 1990, Physical review letters.

[106]  Pacheco,et al.  Newtonian boson spheres. , 1989, Physical review. D, Particles and fields.

[107]  Michael S. Turner,et al.  Coherent scalar-field oscillations in an expanding universe , 1983 .

[108]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[109]  P. C. Peters Index of refraction for scalar, electromagnetic, and gravitational waves in weak gravitational fields , 1974 .

[110]  D. Chesters Dispersion of Gravitational Waves by a Collisionless Gas , 1973 .

[111]  P. Szekeres Linearized gravitation theory in macroscopic media , 1971 .