Dirac Formalism and Symmetry Problems in Quantum Mechanics. II. Symmetry Problems

The quantum‐mechanical formalism developed in a previous article and based on the use of a rigged Hilbert space Φ ⊂ H ⊂ Φ′ is here enlarged by taking into account the symmetry properties of the system. First, the compatibility of a particular symmetry with this structure is obtained by requiring Φ to be invariant under the corresponding representation U of the symmetry group in H. The symmetry is then realized by the restriction of U to Φ and its contragradient representation U in Φ′. This double manifestation of the symmetry is related to the so‐called active and passive points of view commonly used for interpreting symmetry operations. Next, a general procedure is given for constructing a suitable space Φ out of the labeled observables of the system and the representation U describing its symmetry properties. This general method is then applied to the case where U is a semidirect product G = T[squaredtimes]Δ, with T Abelian. Finally, the examples of the Euclidean, the Galilei, and the Poincare groups are briefly studied.

[1]  W. Scott,et al.  Group Theory. , 1964 .

[2]  G. Mackey INDUCED REPRESENTATIONS OF LOCALLY COMPACT GROUPS I , 1952 .

[3]  L. Schwartz Théorie des distributions à valeurs vectorielles. I , 1957 .

[4]  L. Schwartz Espaces de fonctions différentiables a valeurs vectorielles , 1954 .

[5]  Francis D. Murnaghan,et al.  The theory of group representations , 1938 .

[6]  V. Bargmann NOTE ON WIGNER'S THEOREM ON SYMMETRY OPERATIONS , 1964 .

[7]  C. Chevalley Theory of Lie Groups , 1946 .

[8]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[9]  J. Voisin On Some Unitary Representations of the Galilei Group I. Irreducible Representations , 1965 .

[10]  G. Ludwig Die Grundlagen der Quantenmechanik , 1954 .

[11]  K. Maurin Allgemeine Eigenfunktionsentwicklungen, unitäre Darstellungen lokalkompakter Gruppen und automorphe Funktionen , 1966 .

[12]  A. Daneri,et al.  QUANTUM THEORY OF MEASUREMENT AND ERGODICITY CONDITIONS , 1962 .

[13]  N. Mukunda,et al.  PROCEEDINGS OF SEMINAR ON UNIFIED THEORIES OF ELEMENTARY PARTICLES. , 1963 .

[14]  F. I. Mautner On the decomposition of unitary representations of Lie groups , 1951 .

[15]  Raymond J. Seeger,et al.  Lectures in Theoretical Physics , 1962 .

[16]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[17]  F. Lurçat Strongly Decaying Particles and Relativistic Invariance , 1968 .

[18]  Roger Godement Theory of spherical functions , 1952 .

[19]  A. S. Wightman,et al.  On the Localizability of Quantum Mechanical Systems , 1962 .

[20]  J. E. Roberts The Dirac Bra and Ket Formalism , 1966 .

[21]  J. Lévy-Leblond,et al.  N‐Particle Kinematics and Group‐Theoretical Treatment of Phase Space I. Nonrelativistic , 1965 .

[22]  F. Bruhat,et al.  Sur les représentations induites des groupes de Lie , 1956 .

[23]  Eugene P. Wigner,et al.  80 Years of Professor Wigner's Seminal Work "On Unitary Representations of the Inhomogeneous Lorentz Group" , 2021 .

[24]  L. Gårding,et al.  Note on Continuous Representations of Lie Groups. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Edward Nelson,et al.  Representation of Elliptic Operators in an Enveloping Algebra , 1959 .

[26]  Jean-Pierre Antoine,et al.  Dirac Formalism and Symmetry Problems in Quantum Mechanics. I. General Dirac Formalism , 1969 .