A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains

Summary. A posteriori error estimators for fully discrete hierarchic modelling on thin domains are derived and are shown to provide computable upper bounds on the discretization error and on the total error. The estimators are shown to be robust and do not degenerate as the thickness of the domain tends to zero. If the discretization part of the error is negligible, the estimator for the modelling error reduces to the one recently obtained for semi-discrete hierarchical modelling by Babuska and Schwab.