Variational Multiscale Methods for incompressible flows

The present paper reviews the Variational Multiscale Method (VMM) as a framework enabling the development of computational methods for the simulation of incompressible flows, particularly in the form of Large Eddy Simulations (LESs) of turbulent flows. Starting with a variational formulation of the Navier Stokes equations, a separation of all scales of the flow problem into two and three scale groups, respectively, is shown. A particular numerical method emanating from both the two- and the three-scale separation, respectively, is described, one of them in the form of a Finite Element Method (FEM) and the other one in the form of a Finite Volume Method (FVM). Respective numerical examples illustrate the suitability of both variants of the VMM for the numerical simulation of turbulent flows.

[1]  Volker Gravemeier,et al.  Variational Multiscale Large Eddy Simulation of Turbulent Flow in a Diffuser , 2007 .

[2]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[3]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[4]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[5]  P. Moin,et al.  Computational study on the internal layer in a diffuser , 2005, Journal of Fluid Mechanics.

[6]  P. Sagaut,et al.  A finite-volume variational multiscale method coupled with a discrete interpolation filter for large-eddy simulation of isotropic turbulence and fully developed channel flow , 2006 .

[7]  Pierre Sagaut,et al.  An entropy-variable-based VMS/GLS method for the simulation of compressible flows on unstructured grids , 2006 .

[8]  K. Jansen,et al.  An evaluation of the variational multiscale model for large-eddy simulation while using a hierarchical basis , 2002 .

[9]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[10]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[11]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[12]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[13]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[14]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[15]  Volker John,et al.  Finite element error analysis of a variational multiscale method for the Navier-Stokes equations , 2007, Adv. Comput. Math..

[16]  Volker Gravemeier,et al.  Scale-separating operators for variational multiscale large eddy simulation of turbulent flows , 2006, J. Comput. Phys..

[17]  Srinivas Ramakrishnan,et al.  Multiscale Modeling for Turbulence Simulation in Complex Geometries , 2004 .

[18]  John K. Eaton,et al.  Experimental investigation of flow through an asymmetric plane diffuser , 2000 .

[19]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[20]  Ekkehard Ramm,et al.  Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .

[21]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[22]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent flow , 2006 .

[23]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[24]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .