When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models

Background The vast computational resources that became available during the past decade enabled the development and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free parameters whose determination is a substantial obstacle to model development. Direct measurement of biochemical parameters in vivo is often difficult and sometimes impracticable, while fitting them under data-poor conditions may result in biologically implausible values. Results We discuss different methodological approaches to estimate parameters in complex biological models. We make use of the high computational power of the Blue Gene technology to perform an extensive study of the parameter space in a model of avascular tumor growth. We explicitly show that the landscape of the cost function used to optimize the model to the data has a very rugged surface in parameter space. This cost function has many local minima with unrealistic solutions, including the global minimum corresponding to the best fit. Conclusions The case studied in this paper shows one example in which model parameters that optimally fit the data are not necessarily the best ones from a biological point of view. To avoid force-fitting a model to a dataset, we propose that the best model parameters should be found by choosing, among suboptimal parameters, those that match criteria other than the ones used to fit the model. We also conclude that the model, data and optimization approach form a new complex system and point to the need of a theory that addresses this problem more generally.

[1]  James P. Freyer,et al.  Tumor growthin vivo and as multicellular spheroids compared by mathematical models , 1994, Bulletin of mathematical biology.

[2]  J. Timmer,et al.  Systems biology: experimental design , 2009, The FEBS journal.

[3]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[4]  Peter S. Pacheco Parallel programming with MPI , 1996 .

[5]  I. Jolliffe Principal Component Analysis , 2002 .

[6]  Benjamin Gompertz,et al.  On the Nature of the Function Expressive of the Law of Human Mortality , 1815 .

[7]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[8]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[9]  L. Watson,et al.  Globally optimised parameters for a model of mitotic control in frog egg extracts. , 2005, Systems biology.

[10]  G. Fracasso,et al.  Effect of therapeutic macromolecules in spheroids. , 2000, Critical reviews in oncology/hematology.

[11]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[12]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[13]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[14]  J. Freyer,et al.  Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. , 1986, Cancer research.

[15]  J. Freyer Role of necrosis in regulating the growth saturation of multicellular spheroids. , 1988, Cancer research.

[16]  J P Freyer,et al.  Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. , 1980, Cancer research.

[17]  Bryan C. Daniels,et al.  Sloppiness, robustness, and evolvability in systems biology. , 2008, Current opinion in biotechnology.

[18]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[19]  George L.-T. Chiu,et al.  Overview of the Blue Gene/L system architecture , 2005, IBM J. Res. Dev..

[20]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[21]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[22]  Z Bajzer,et al.  Analysis of growth of multicellular tumour spheroids by mathematical models , 1994, Cell proliferation.

[23]  Yaohang Li,et al.  Decentralized Replica Exchange Parallel Tempering: An Efficient Implementation of Parallel Tempering Using MPI and SPRNG , 2007, ICCSA.

[24]  R. Sutherland Cell and environment interactions in tumor microregions: the multicell spheroid model. , 1988, Science.

[25]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[26]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[27]  David F. Heidel,et al.  An Overview of the BlueGene/L Supercomputer , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[28]  Jacob Roll,et al.  Systems biology: model based evaluation and comparison of potential explanations for given biological data , 2009, The FEBS journal.

[29]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[30]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[31]  John A. Nelder,et al.  Nelder-Mead algorithm , 2009, Scholarpedia.

[32]  Jelena Pjesivac-Grbovic,et al.  A multiscale model for avascular tumor growth. , 2005, Biophysical journal.

[33]  D L S McElwain,et al.  A history of the study of solid tumour growth: The contribution of mathematical modelling , 2004, Bulletin of mathematical biology.

[34]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[35]  J. King,et al.  Mathematical modelling of avascular-tumour growth. , 1997, IMA journal of mathematics applied in medicine and biology.

[36]  J. Freyer,et al.  Determination of diffusion constants for metabolites in multicell tumor spheroids. , 1983, Advances in experimental medicine and biology.

[37]  John J. Tyson,et al.  Parameter Estimation for a Mathematical Model of the Cell Cycle in Frog Eggs , 2005, J. Comput. Biol..

[38]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[39]  James P. Freyer,et al.  The Use of 3-D Cultures for High-Throughput Screening: The Multicellular Spheroid Model , 2004, Journal of biomolecular screening.

[40]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.