Ending aging in super glassy polymer membranes.

Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

[1]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[2]  L. Robeson,et al.  The upper bound revisited , 2008 .

[3]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[4]  I. Pinnau,et al.  Synthesis and gas permeation properties of poly(4-methyl-2-pentyne) , 1996 .

[5]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[6]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[7]  S. Mullens,et al.  Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes : Relation between the transport of gases and structural characteristics , 2006 .

[8]  D. Knorr,et al.  Enhanced gas transport properties and molecular mobilities in nano-constrained poly[1-(trimethylsilyl)-1-propyne] membranes , 2012 .

[9]  F. McCrackin,et al.  Empirical relation for diffusion of gases in hydrocarbon polymers: Interpretation in terms of fractional free volume , 1981 .

[10]  Eiji Isobe,et al.  Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability , 1983 .

[11]  M. Guiver,et al.  Polymer Rigidity Improves Microporous Membranes , 2013, Science.

[12]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[13]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[14]  Jungkyu Choi,et al.  Poly(1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separations , 2008 .

[15]  K. Nagai,et al.  Nitrogen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends , 2005 .

[16]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[17]  Benny D. Freeman,et al.  Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites , 2008 .

[18]  J. D. Abajo,et al.  Gas separation properties of mixed-matrix membranes containing porous polyimides fillers ☆ , 2013 .

[19]  Benny D. Freeman,et al.  Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne) , 2008 .

[20]  Klaus-Viktor Peinemann,et al.  Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)¿silica nanocomposites , 2005 .

[21]  P. Budd,et al.  Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity (PIM‐1) , 2010 .

[22]  Chris Dotremont,et al.  Free volume and interstitial mesopores in silica filled poly(I-trimethylsilyl-l-propyne) nanocomposites , 2005 .

[23]  Y. Yampolskii,et al.  Estimation of free volume in poly(trimethylsilyl propyne) by positron annihilation and electrochromism methods , 1993 .

[24]  Anita J. Hill,et al.  Crosslinking poly[1-(trimethylsilyl)-1-propyne] and its effect on physical stability , 2008 .

[25]  J. M. Henis,et al.  The Developing Technology of Gas Separating Membranes , 1983, Science.

[26]  B. Freeman,et al.  Polymer characterization and gas permeability of poly(1‐trimethylsilyl‐1‐propyne) [PTMSP], poly(1‐phenyl‐1‐propyne) [PPP], and PTMSP/PPP blends , 1996 .

[27]  Anita J. Hill,et al.  Effect of Nanoparticles on Gas Sorption and Transport in Poly(1-trimethylsilyl-1-propyne) , 2003 .

[28]  Aaron W Thornton,et al.  Lithiated porous aromatic frameworks with exceptional gas storage capacity. , 2012, Angewandte Chemie.

[29]  R. Baker Future directions of membrane gas separation technology , 2002 .

[30]  K. Nagai,et al.  Influence of methanol conditioning and physical aging on carbon spin-lattice relaxation times of poly(1-trimethylsilyl-1-propyne) , 2004 .

[31]  T. Hilder,et al.  Predicting gas diffusion regime within pores of different size, shape and composition , 2009 .

[32]  May-Britt Hägg,et al.  Effect of Plasma Treatment on the Gas Permeability of Poly(4-methyl-2-pentyne) Membranes , 2007 .

[33]  R. Noble,et al.  Designing the Next Generation of Chemical Separation Membranes , 2011, Science.

[34]  Benny D. Freeman,et al.  Membrane Gas Separation: Freeman/Membrane Gas Separation , 2010 .

[35]  B. Freeman,et al.  Hydrocarbon/hydrogen mixed gas permeation in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP), poly(1‐phenyl‐1‐propyne) (PPP), and PTMSP/PPP blends , 1996 .

[36]  J. Kurchan,et al.  In and out of equilibrium , 2005, Nature.