Path consistent model selection in additive risk model via Lasso

As a flexible alternative to the Cox model, the additive risk model assumes that the hazard function is the sum of the baseline hazard and a regression function of covariates. For right censored survival data when variable selection is needed along with model estimation, we propose a path consistent model selector using a modified Lasso approach, under the additive risk model assumption. We show that the proposed estimator possesses the oracle variable selection and estimation property. Applications of the proposed approach to three right censored survival data sets show that the proposed modified Lasso yields parsimonious models with satisfactory estimation and prediction results.

[1]  L. Breiman Heuristics of instability and stabilization in model selection , 1996 .

[2]  Alan J. Miller Subset Selection in Regression , 1992 .

[3]  Shuangge Ma,et al.  Additive Risk Models for Survival Data with High‐Dimensional Covariates , 2006, Biometrics.

[4]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[5]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[6]  Zhiliang Ying,et al.  Semiparametric analysis of the additive risk model , 1994 .

[7]  Ian W. McKeague,et al.  A partly parametric additive risk model , 1994 .

[8]  Jian Huang,et al.  Regularized Estimation in the Accelerated Failure Time Model with High‐Dimensional Covariates , 2006, Biometrics.

[9]  D. Cox,et al.  Analysis of Survival Data. , 1986 .

[10]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[11]  M. Yuan,et al.  On the Nonnegative Garrote Estimator , 2005 .

[12]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[13]  P. Grambsch,et al.  Prognosis in primary biliary cirrhosis: Model for decision making , 1989, Hepatology.

[14]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[15]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .

[16]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[17]  S. Rosset,et al.  Piecewise linear regularized solution paths , 2007, 0708.2197.

[18]  Jiang Gui,et al.  Partial Cox regression analysis for high-dimensional microarray gene expression data , 2004, ISMB/ECCB.

[19]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[20]  G. Wahba Spline models for observational data , 1990 .

[21]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Via the LAD-Lasso , 2008 .

[22]  T Cai,et al.  Regularized Estimation for the Accelerated Failure Time Model , 2009, Biometrics.

[23]  J. Klein,et al.  Survival Analysis: Techniques for Censored and Truncated Data , 1997 .

[24]  Jian Huang,et al.  LASSO Method for Additive Risk Models with High Dimensional Covariates , 2005 .

[25]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[26]  T. Lumley,et al.  Time‐Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker , 2000, Biometrics.

[27]  David W. Hosmer,et al.  Applied Survival Analysis: Regression Modeling of Time-to-Event Data , 2008 .

[28]  C. Geyer On the Asymptotics of Constrained $M$-Estimation , 1994 .

[29]  N. E. Breslow Statistical Methods in Cancer Research , 1986 .

[30]  D. Cox Regression Models and Life-Tables , 1972 .

[31]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[32]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[33]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[34]  G. Wahba,et al.  A NOTE ON THE LASSO AND RELATED PROCEDURES IN MODEL SELECTION , 2006 .

[35]  Odd Aalen,et al.  A Model for Nonparametric Regression Analysis of Counting Processes , 1980 .

[36]  Clive Osmond,et al.  Modern Statistical Methods in Chronic Disease Epidemiology. , 1988 .

[37]  Danh V. Nguyen,et al.  Partial least squares proportional hazard regression for application to DNA microarray survival data , 2002, Bioinform..

[38]  B. Turlach Discussion of "Least Angle Regression" by Efron, Hastie, Johnstone and Tibshirani , 2004 .

[39]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .