Monte Carlo evaluation of multivariate normal probabilities

Abstract This paper extends research on the simulation of multivariate normal probabilities of high-order dimension by developing a new family of simulators. Such simulators are useful for models with limited dependent variables, including multinomial probit, in panel studies, spatial analysis, and time series analysis. The simulators are derived from a Cholesky decomposition of the covariance matrix, combined with a suitable choice of an importance sampling distribution. The paper studies, among others, the impact of antithetical sampling. The insights gained in this paper are of use in Bayesian analysis as well, in the evaluation of posterior densities.

[1]  J. Geweke,et al.  Antithetic acceleration of Monte Carlo integration in Bayesian inference , 1988 .

[2]  István Deák,et al.  Multidimensional Integration and Stochastic Programming , 1988 .

[3]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[4]  István Deák,et al.  Random Number Generators and Simulation , 1990 .

[5]  C. Manski,et al.  On the Use of Simulated Frequencies to Approximate Choice Probabilities , 1981 .

[6]  Peter E. Rossi,et al.  Bayesian analysis of dichotomous quantal response models , 1984 .

[7]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[8]  Michael Keane,et al.  Simulation estimation for panel data models with limited dependent variables , 1993 .

[9]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[10]  István Deák,et al.  Three digit accurate multiple normal probabilities , 1980 .

[11]  K. B. Oldham,et al.  An Atlas of Functions. , 1988 .

[12]  V. Hajivassiliou,et al.  Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models , 1993 .

[13]  S. Gupta Bibliography on the Multivariate Normal Integrals and Related Topics , 1963 .

[14]  D. L. Wallace Bounds on Normal Approximations to Student's and the Chi-Square Distributions , 1959 .

[15]  Vassilis A. Hajivassiliou,et al.  Simulation Estimation Methods for Limited Dependent Variable Models , 1991 .

[16]  Steven Stern,et al.  A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models , 1992 .

[17]  J. Horowitz,et al.  An Investigation of the Accuracy of the Clark Approximation for the Multinomial Probit Model , 1982 .

[18]  D. McFadden Econometric Models of Probabilistic Choice , 1981 .

[19]  C. E. Clark The Greatest of a Finite Set of Random Variables , 1961 .

[20]  Paul A. Ruud,et al.  Handbook of Econometrics: Classical Estimation Methods for LDV Models Using Simulation , 1993 .

[21]  G. Karami Lecture Notes in Engineering , 1989 .

[22]  Normalizing transformations of Student's t distribution , 1974 .

[23]  Y. L. Tong The multivariate normal distribution , 1989 .

[24]  Wagner A. Kamakura,et al.  Book Review: Structural Analysis of Discrete Data with Econometric Applications , 1982 .

[25]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[26]  Paul A. Ruud,et al.  Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results , 1996 .

[27]  Vassilis Argyrou Hajivassiliou,et al.  Simulating Normal Rectangle Probabilities and Their Derivatives: Effects of Vectorization , 1993, Int. J. High Perform. Comput. Appl..

[28]  Carlos F. Daganzo,et al.  Multinomial Probit: The Theory and its Application to Demand Forecasting. , 1980 .

[29]  A. Case Neighborhood influence and technological change , 1992 .

[30]  P. A. P. Moran,et al.  THE MONTE CARLO EVALUATION OF ORTHANT PROBABILITIES FOR MULTIVARIATE NORMAL DISTRIBUTIONS , 1984 .

[31]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[32]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[33]  Herman K. van Dijk,et al.  Posterior moments computed by mixed integration , 1985 .

[34]  Paul A. Ruud,et al.  Probit with Dependent Observations , 1988 .

[35]  S. Gollwitzer,et al.  Comparison of Numerical Schemes for the Multinormal Integral , 1987 .

[36]  Yuri Ermoliev,et al.  Numerical techniques for stochastic optimization , 1988 .

[37]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[38]  M. Evans,et al.  Monte carlo computation of some multivariate normal probabilities , 1988 .

[39]  Anne Case,et al.  Interstate tax competition after TRA86 , 1993 .

[40]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[41]  S. Chib Bayes inference in the Tobit censored regression model , 1992 .