USING ULTRA LONG PERIOD CEPHEIDS TO EXTEND THE COSMIC DISTANCE LADDER TO 100 Mpc AND BEYOND

We examine the properties of 18 long period (80–210 days) and very luminous (median absolute magnitude of MI = −7.86 and MV = −6.97) Cepheids to see if they can serve as a useful distance indicator. We find that these Ultra Long Period (ULP) Cepheids have a relatively shallow period–luminosity (PL) relation, so in fact they are more “standard candle” like than classical Cepheids. In the reddening-free Wesenheit index, the slope of the ULP PL relation is consistent with zero. The scatter of our sample about the WI PL relation is 0.23 mag, approaching that of classical Cepheids and Type Ia Supernovae. We expect this scatter to decrease as bigger and more uniform samples of ULP Cepheids are obtained. We also measure a nonzero period derivative for one ULP Cepheid (SMC HV829) and use the result to probe evolutionary models and mass loss of massive stars. ULP Cepheids' main advantage over classical Cepheids is that they are more luminous, and as such show great potential as stellar distance indicators to galaxies up to 100 Mpc and beyond.

[1]  C. D. Laney,et al.  The influence of chemical composition on the properties of Cepheid stars. II - The iron content ⋆ , 2008, 0807.1196.

[2]  A. Saha,et al.  I Zw 18 Revisited with HST ACS and Cepheids: New Distance and Age , 2007, 0707.2371.

[3]  S. Kanbur,et al.  Investigations of the Nonlinear LMC Cepheid Period‐Luminosity Relation with Testimator and Schwarz Information Criterion Methods , 2007, 0704.3601.

[4]  A. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.

[5]  R. Kudritzki,et al.  The Araucaria Project: The Distance to the Sculptor Group Galaxy NGC 55 from a Newly Discovered Abundant Cepheid Population , 2006, astro-ph/0610595.

[6]  L. Macri,et al.  A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant , 2006, astro-ph/0608211.

[7]  R. Kudritzki,et al.  The Araucaria Project. An Accurate Distance to the Local Group Galaxy NGC 6822 from Near-Infrared Photometry of Cepheid Variables , 2006, astro-ph/0605231.

[8]  J. Prieto,et al.  A New Method to Calibrate the Magnitudes of Type Ia Supernovae at Maximum Light , 2006, astro-ph/0603407.

[9]  P. Wood,et al.  Bump Cepheids in the Magellanic Clouds: Metallicities, the Distances to the LMC and SMC, and the Pulsation-Evolution Mass Discrepancy , 2006, astro-ph/0601225.

[10]  M. Ruiz,et al.  Chemical Composition of Two H II Regions in NGC 6822 Based on VLT Spectroscopy , 2005, astro-ph/0507084.

[11]  R. Kudritzki,et al.  On the α-Element Abundance Gradients in the Disk of the Sculptor Spiral Galaxy NGC 300 , 2005 .

[12]  R. Kudritzki,et al.  The Araucaria Project . Near-Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC , 2005 .

[13]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[14]  R. Kudritzki,et al.  The Araucaria Project: An Improved Distance to the Sculptor Spiral Galaxy NGC 300 from Its Cepheid Variables , 2004, astro-ph/0405581.

[15]  A. Ferguson,et al.  Star formation in gaseous galaxy halos. VLT-spectroscopy of extraplanar H II-regions in NGC 55 , 2003 .

[16]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[17]  R. Hilditch,et al.  Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance , 2003, astro-ph/0411672.

[18]  M. Marconi,et al.  On the Distance of Magellanic Clouds: First Overtone Cepheids , 2002, astro-ph/0206102.

[19]  W. Gieren,et al.  The ARAUCARIA Project: Discovery of Cepheid Variables in NGC 300 from a Wide-Field Imaging Survey , 2002 .

[20]  D. Schaerer,et al.  Database of Geneva stellar evolution tracks and isochrones for (UBV) J (RI) C JHKLL'M, HST-WFPC2, Geneva and Washington photometric systems , 2000, astro-ph/0011497.

[21]  M. Marconi,et al.  Intermediate-Mass Star Models with Different Helium and Metal Contents , 2000, astro-ph/0006251.

[22]  L. Macri,et al.  The DIRECT Project: Influence of Blending on the Cepheid Distance Scale. I. Cepheids in M31 , 1999, astro-ph/9908293.

[23]  I. Ivans,et al.  V(RI)C Photometry of Cepheids in the Magellanic Clouds , 1998, astro-ph/9903095.

[24]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[25]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[26]  P. Harding,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The Metallicity Dependence of the Cepheid Distance Scale , 1997, astro-ph/9712055.

[27]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[28]  C. Kochanek Rebuilding the Cepheid Distance Scale. I. A Global Analysis of Cepheid Mean Magnitudes , 1997, astro-ph/9703059.

[29]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[30]  R. Kennicutt,et al.  Spatially resolved optical and near infrared spectroscopy of I Zw 18 , 1993 .

[31]  P. Wood,et al.  Theoretical models of Cepheid variables and their BVI(c) colors and magnitudes , 1993 .

[32]  Wendy L. Freedman,et al.  THE CEPHEID DISTANCE SCALE , 1991 .

[33]  B. Madore,et al.  An empirical test for the metallicity sensitivity of the Cepheid period-luminosity relation , 1990 .

[34]  A. Schwarzenberg-Czerny On the advantage of using analysis of variance for period search. , 1989 .

[35]  B. Madore,et al.  BVRI photometry of extragalactic cepheids and new insights for the distance scale , 1985 .

[36]  B. Madore,et al.  Leavitt variables - Bright variable supergiants and their implications for the distance scale , 1985 .

[37]  M. Edmunds,et al.  A survey of chemical compositions of H II regions in the Magellanic Clouds , 1978 .

[38]  M. Peimbert,et al.  Chemical composition of H ii regions in the Small Magellanic Cloud and the pregalactic helium abundance , 1976 .

[39]  B. Madore Photoelectric UBV photometry of cepheids in the Magellanic Clouds and in the southern Milky Way. , 1975 .

[40]  W. Baade,et al.  THE PERIOD-LUMINOSITY RELATION OF THE CEPHEIDS , 1956 .

[41]  F. W. Bessel Bestimmung der Entfernung des 61sten Sterns des Schwans , 1838 .

[42]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003 .

[43]  S. Gaposchkin,et al.  Variable stars in the Small Magellanic Cloud , 1966 .