Robust visual tracking via CAMShift and structural local sparse appearance model

A new background analysis method is proposed based on sparse representation.We propose a semi-global weighted search algorithm for the local optimization problem.We develop a model update strategy for long-term robust tracking. This paper addresses issues in visual tracking where videos contain object intersections, pose changes, occlusions, illumination changes, motion blur, and similar color distributed background. We apply the structural local sparse representation method to analyze the background region around the target. After that, we reduce the probability of prominent features in the background and add new information to the target model. In addition, a weighted search method is proposed to search the best candidate target region. To a certain extent, the weighted search method solves the local optimization problem. The proposed scheme, designed to track single human through complex scenarios from videos, has been tested on some video sequences. Several existing tracking methods are applied to the same videos and the corresponding results are compared. Experimental results show that the proposed tracking scheme demonstrates a very promising performance in terms of robustness to occlusions, appearance changes, and similar color distributed background.

[1]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Youngjoon Han,et al.  Optimal colour-based mean shift algorithm for tracking objects , 2014, IET Comput. Vis..

[3]  J. Ferryman,et al.  PETS2009: Dataset and challenge , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[4]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Chirala Satyanarayana,et al.  Visual Object Target Tracking Using Particle Filter : A Survey , 2013 .

[6]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[7]  Jun Yu,et al.  Click Prediction for Web Image Reranking Using Multimodal Sparse Coding , 2014, IEEE Transactions on Image Processing.

[8]  D. Zhang,et al.  Robust mean-shift tracking with corrected background-weighted histogram , 2012 .

[9]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[10]  Fuchun Sun,et al.  Efficient visual tracking using particle filter with incremental likelihood calculation , 2012, Information Sciences.

[11]  Abhinav Gupta,et al.  Transferring Rich Feature Hierarchies for Robust Visual Tracking , 2015, ArXiv.

[12]  Mansour Jamzad,et al.  Visual tracking using D2-clustering and particle filter , 2012, 2012 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).

[13]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Robert T. Collins,et al.  An Open Source Tracking Testbed and Evaluation Web Site , 2005 .

[15]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[16]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[17]  Xianglong Tang,et al.  Dynamic appearance model for particle filter based visual tracking , 2012, Pattern Recognit..

[18]  Mingli Song,et al.  Manifold Ranking-Based Matrix Factorization for Saliency Detection , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Meng Wang,et al.  Image clustering based on sparse patch alignment framework , 2014, Pattern Recognit..

[20]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Jie Yang,et al.  Efficient and robust fragments-based multiple kernels tracking , 2011 .

[23]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Abdolrasoul Mirghadri,et al.  Enhanced adaptive bandwidth tracking using mean shift algorithm , 2011, 2011 IEEE 3rd International Conference on Communication Software and Networks.

[26]  Irene Y. H. Gu,et al.  Robust Visual Object Tracking Using Multi-Mode Anisotropic Mean Shift and Particle Filters , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[28]  Seunghoon Hong,et al.  Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network , 2015, ICML.

[29]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[30]  S. Ko,et al.  Object Modeling with Color Arrangement for Region‐Based Tracking , 2012 .

[31]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.