On the channel density of EEG signals for reliable biometric recognition

[1]  Kathryn E. Kasmarik,et al.  Weighted Gate Layer Autoencoders , 2021, IEEE Transactions on Cybernetics.

[2]  Jiankun Hu,et al.  BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs , 2020, Pattern Recognit..

[3]  Gian Luca Marcialis,et al.  Robustness of functional connectivity metrics for EEG-based personal identification over task-induced intra-class and inter-class variations , 2019, Pattern Recognit. Lett..

[4]  Jiankun Hu,et al.  Convolutional Neural Networks Using Dynamic Functional Connectivity for EEG-Based Person Identification in Diverse Human States , 2019, IEEE Transactions on Information Forensics and Security.

[5]  Zhanpeng Jin,et al.  A Survey on Brain Biometrics , 2019, ACM Comput. Surv..

[6]  Hussein A. Abbass,et al.  Convolution Neural Networks for Person Identification and Verification Using Steady State Visual Evoked Potential , 2018, 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[7]  Min Wang,et al.  Augmenting The Size of EEG datasets Using Generative Adversarial Networks , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[8]  Su Yang,et al.  Task sensitivity in EEG biometric recognition , 2018, Pattern Analysis and Applications.

[9]  Patrizio Campisi,et al.  Longitudinal Evaluation of EEG-Based Biometric Recognition , 2017, IEEE Transactions on Information Forensics and Security.

[10]  Yong Peng,et al.  Task-Free Brainprint Recognition Based on Degree of Brain Networks , 2017, ICONIP.

[11]  Patrizio Campisi,et al.  Visually evoked potential for EEG biometrics using convolutional neural network , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[12]  Robert C. Qiu,et al.  Individual Recognition in Schizophrenia using Deep Learning Methods with Random Forest and Voting Classifiers: Insights from Resting State EEG Streams , 2017, ArXiv.

[13]  Yufei Huang,et al.  EEG-based biometric identification with deep learning , 2017, 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER).

[14]  Su Yang,et al.  On the Usability of Electroencephalographic Signals for Biometric Recognition: A Survey , 2017, IEEE Transactions on Human-Machine Systems.

[15]  Clemens Brunner,et al.  Volume Conduction Influences Scalp-Based Connectivity Estimates , 2016, Front. Comput. Neurosci..

[16]  Sherif N. Abbas,et al.  A new multi-level approach to EEG based human authentication using eye blinking , 2016, Pattern Recognit. Lett..

[17]  Thierry Blu,et al.  Resting State EEG-based biometrics for individual identification using convolutional neural networks , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[18]  Gian Luca Marcialis,et al.  An EEG-Based Biometric System Using Eigenvector Centrality in Resting State Brain Networks , 2015, IEEE Signal Processing Letters.

[19]  Patrizio Campisi,et al.  Brain waves for automatic biometric-based user recognition , 2014, IEEE Transactions on Information Forensics and Security.

[20]  Fabio Babiloni,et al.  Human Brain Distinctiveness Based on EEG Spectral Coherence Connectivity , 2014, IEEE Transactions on Biomedical Engineering.

[21]  Christoph M. Michel,et al.  Towards the utilization of EEG as a brain imaging tool , 2012, NeuroImage.

[22]  Hubert Cecotti,et al.  Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  R. B. Reilly,et al.  FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection , 2010, Journal of Neuroscience Methods.

[24]  Wangxin Yu,et al.  Characterization of Surface EMG Signal Based on Fuzzy Entropy , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[25]  D. Tucker,et al.  Scalp electrode impedance, infection risk, and EEG data quality , 2001, Clinical Neurophysiology.

[26]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[27]  F. Perrin,et al.  Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.

[28]  Patrizio Campisi,et al.  On the Permanence of EEG Signals for Biometric Recognition , 2016, IEEE Transactions on Information Forensics and Security.

[29]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .