Modeling mass‐dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches

[1] How terrain, snow cover properties, and release conditions combine to determine avalanche speed and runout remains the central problem in avalanche science. Here we report on efforts to understand how surface roughness, snow properties, and internal mass fluxes control the generation of granular fluctuation energy within the basal shear layers of dense flowing snow avalanches, and the subsequent influence on avalanche speed and deposition patterns. For this purpose we augment the depth-averaged equations of motion to account for the generation of the kinetic energy associated with the particle fluctuations, and dissipation of this energy by collisional and frictional material interactions. Using high-resolution laser scans of the preevent snow cover and postevent deposits from two avalanches released at the Swiss Vallee de la Sionne observation station, we compare measured and calculated deposition heights. The model captures flow velocities and deposition heights without ad hoc adjustments of the constitutive parameters according to avalanche size. The model parameters are separated into a terrain and other pure material (snow) parameters. The investigations reveal how release conditions and snow entrainment influence the internal mass distribution, and control flow regime transitions between the fluidized regime (head) and plug regime (tail). The comparison between the measured and calculated velocities and deposition heights demonstrates why standard Voellmy-type submodels are suitable for many practical mitigation problems, but also why they are limited to cases where the calibrated parameters, already accounting for terrain, snow cover properties, avalanche size, and mass intake, are known.

[1]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[2]  J. Vallet,et al.  Variation of deposition depth with slope angle in snow avalanches: Measurements from Vallée de la Sionne , 2010 .

[3]  P. Bartelt,et al.  Velocity profile inversion in dense avalanche flow , 2010, Annals of Glaciology.

[4]  Christophe Ancey,et al.  Kulikovskiy–Sveshnikova–Beghin model of powder snow avalanches: Development and application , 2007 .

[5]  Betty Sovilla,et al.  Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site , 2008 .

[6]  P. Bartelt,et al.  Fluctuation-dissipation relations for granular snow avalanches , 2006 .

[7]  Yusuke Fukushima,et al.  Numerical Simulation of Powder-Snow Avalanches , 1990, Journal of Glaciology.

[8]  P. Gauer,et al.  Possible erosion mechanisms in snow avalanches , 2004, Annals of Glaciology.

[9]  Kolumban Hutter,et al.  Avalanche dynamics: Dynamics of rapid flows of dense granular avalanches , 2016 .

[10]  P. Gauer,et al.  Analysis of avalanche measurements out of the runout area of NGI's full-scale test-site Ryggfonn , 2009 .

[11]  Yves Bühler,et al.  Sensitivity of snow avalanche simulations to digital elevation model quality and resolution , 2011, Annals of Glaciology.

[12]  Mohamed Naaim,et al.  Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects , 2004 .

[13]  Marc Christen,et al.  Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results , 2010, Annals of Glaciology.

[14]  T. Faug,et al.  Dry Granular Flow Modelling Including Erosion and Deposition , 2003 .

[15]  Peter Gauer,et al.  On pulsed Doppler radar measurements of avalanches and their implication to avalanche dynamics , 2007 .

[16]  P. Bartelt,et al.  Frictional relaxation in avalanches , 2010, Annals of Glaciology.

[17]  David F. Maune Office hours are by appointment. Textbook: Digital Elevation Model Technologies and Applications: The DEM , 2007 .

[18]  P. Bartelt,et al.  Snow avalanche flow-regime transitions induced by mass and random kinetic energy fluxes , 2011, Annals of Glaciology.

[19]  S. Pudasaini,et al.  Nonlinear Processes in Geophysics Energy considerations in accelerating rapid shear granular flows , 2009 .

[20]  D. Mcclung,et al.  A Two–Parameter Model of Snow–Avalanche Motion , 1980, Journal of Glaciology.

[21]  Joachim Heierli,et al.  Measurement of crack‐face friction in collapsed weak snow layers , 2009 .

[22]  C. Ancey Powder-snow avalanches: approximation as non-Boussinesq clouds with a Richardson number-dependent entrainment function , 2004 .

[23]  U. Gruber,et al.  Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS , 2007, Environ. Model. Softw..

[24]  T. B. Moodie,et al.  Gravity currents , 2002 .

[25]  Edward E. Adams,et al.  Density, velocity and friction measurements in a dry-snow avalanche , 1998 .

[26]  Marc Christen,et al.  RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain , 2010 .

[27]  P. Haff Grain flow as a fluid-mechanical phenomenon , 1983, Journal of Fluid Mechanics.

[28]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[29]  Peter Gauer,et al.  On full-scale avalanche measurements at the Ryggfonn test site, Norway , 2007 .

[30]  Jean-Pierre Vilotte,et al.  On the use of Saint Venant equations to simulate the spreading of a granular mass , 2005 .

[31]  P. Bartelt,et al.  Measurements of dense snow avalanche basal shear to normal stress ratios (S/N) , 2007 .

[32]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[33]  P. Bartelt,et al.  Starving avalanches: Frictional mechanisms at the tails of finite‐sized mass movements , 2007 .

[34]  Sebastian Noelle,et al.  Shock waves, dead zones and particle-free regions in rapid granular free-surface flows , 2003, Journal of Fluid Mechanics.

[35]  Peter Gauer,et al.  Exploring the significance of the fluidized flow regime for avalanche hazard mapping , 2008, Annals of Glaciology.

[36]  Brian W. McArdell,et al.  Granulometric investigations of snow avalanches , 2009, Journal of Glaciology.

[37]  F. Legros The mobility of long-runout landslides , 2002 .

[38]  Peter Sampl,et al.  Avalanche simulation with SAMOS , 2004, Annals of Glaciology.

[39]  V. Jomelli,et al.  Wet snow avalanche deposits in the french alps: structure and sedimentology , 2001 .

[40]  P. Bartelt,et al.  Production and decay of random kinetic energy in granular snow avalanches , 2009, Journal of Glaciology.

[41]  S. Pudasaini,et al.  Rapid shear flows of dry granular masses down curved and twisted channels , 2003, Journal of Fluid Mechanics.

[42]  Krister Kristensen,et al.  Particle simulation of snow avalanche motion , 1984 .

[43]  P. Bartelt,et al.  Position dependent velocity profiles in granular avalanches , 2010 .

[44]  J. Schweizer,et al.  The energy release rate of mode II fractures in layered snow samples , 2006 .

[45]  P. Gauer,et al.  Snow avalanche energy estimation from seismic signal analysis , 2007 .

[46]  P. Bartelt,et al.  Dispersive pressure and density variations in snow avalanches , 2011, Journal of Glaciology.

[47]  Betty Sovilla,et al.  On the complementariness of infrasound and seismic sensors for monitoring snow avalanches , 2011 .

[48]  Betty Sovilla,et al.  Measured shear rates in large dry and wet snow avalanches , 2009, Journal of Glaciology.

[49]  B. Salm,et al.  Flow, flow transition and runout distances of flowing avalanches , 1993, Annals of Glaciology.

[50]  Othmar Buser,et al.  Observed Maximum Run-Out Distance of Snow Avalanches and the Determination of the Friction Coefficients µ and ξ , 1980, Journal of Glaciology.

[51]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[52]  B. Salm,et al.  Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining , 1999, Journal of Glaciology.