A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte

[1]  Jusef Hassoun,et al.  Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery , 2015 .

[2]  L. Shaw,et al.  Advances and challenges of sodium ion batteries as post lithium ion batteries , 2015 .

[3]  J. Hassoun,et al.  A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode , 2015 .

[4]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[5]  T. Shibata,et al.  Fast discharge process of layered cobalt oxides due to high Na+ diffusion , 2015, Scientific Reports.

[6]  Jusef Hassoun,et al.  A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. , 2015, ACS applied materials & interfaces.

[7]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[8]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[9]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[10]  B. Scrosati,et al.  High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium‐Ion Batteries , 2014 .

[11]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[12]  Yang‐Kook Sun,et al.  Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[14]  Daniel Sharon,et al.  On the challenge of developing advanced technologies for electrochemical energy storage and conversion , 2014 .

[15]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[16]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[17]  H. Pham,et al.  Performance Enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O2 Battery Cathode Using Fluorinated Linear Carbonate as a High-Voltage Additive , 2014 .

[18]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[19]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[20]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[21]  Dong Ju Lee,et al.  Alternative materials for sodium ion–sulphur batteries , 2013 .

[22]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[23]  Xiqian Yu,et al.  Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries , 2013 .

[24]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[25]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[26]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[27]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[28]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[29]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[30]  R. Ruffo,et al.  Layered Na(0.71)CoO(2): a powerful candidate for viable and high performance Na-batteries. , 2012, Physical chemistry chemical physics : PCCP.

[31]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[32]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[33]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[34]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[35]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[36]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[37]  J. Tilton,et al.  Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium , 2009 .

[38]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[39]  F. Risacher,et al.  Origin of Salts and Brine Evolution of Bolivian and Chilean Salars , 2009 .

[40]  Peter Hall,et al.  Energy-storage technologies and electricity generation , 2008 .

[41]  R. Huggins Solid State Ionics , 1989 .

[42]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[43]  J. Molenda,et al.  Structure of ionic and electronic defects in cobalt bronze NaxCoO2 , 1985 .

[44]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[45]  W. Patterson Energy policy , 1978, Nature.

[46]  P. Hagenmuller,et al.  Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .